Loading…
(\infty\)-Diff: Infinite Resolution Diffusion with Subsampled Mollified States
This paper introduces \(\infty\)-Diff, a generative diffusion model defined in an infinite-dimensional Hilbert space, which can model infinite resolution data. By training on randomly sampled subsets of coordinates and denoising content only at those locations, we learn a continuous function for arb...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper introduces \(\infty\)-Diff, a generative diffusion model defined in an infinite-dimensional Hilbert space, which can model infinite resolution data. By training on randomly sampled subsets of coordinates and denoising content only at those locations, we learn a continuous function for arbitrary resolution sampling. Unlike prior neural field-based infinite-dimensional models, which use point-wise functions requiring latent compression, our method employs non-local integral operators to map between Hilbert spaces, allowing spatial context aggregation. This is achieved with an efficient multi-scale function-space architecture that operates directly on raw sparse coordinates, coupled with a mollified diffusion process that smooths out irregularities. Through experiments on high-resolution datasets, we found that even at an \(8\times\) subsampling rate, our model retains high-quality diffusion. This leads to significant run-time and memory savings, delivers samples with lower FID scores, and scales beyond the training resolution while retaining detail. |
---|---|
ISSN: | 2331-8422 |