Loading…

Equidistribution without stability for toric surface maps

We prove an equidistribution result for iterated preimages of curves by a large class of rational maps \(f:\mathbb{CP}^2\dashrightarrow\mathbb{CP}^2\) that cannot be birationally conjugated to algebraically stable maps. The maps, which include recent examples with transcendental first dynamical degr...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-04
Main Authors: Diller, Jeffrey, Roeder, Roland
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Diller, Jeffrey
Roeder, Roland
description We prove an equidistribution result for iterated preimages of curves by a large class of rational maps \(f:\mathbb{CP}^2\dashrightarrow\mathbb{CP}^2\) that cannot be birationally conjugated to algebraically stable maps. The maps, which include recent examples with transcendental first dynamical degree, are distinguished by the fact that they have constant Jacobian determinant relative to the natural holomorphic two form on the algebraic torus. Under the additional hypothesis that \(f\) has "small topological degree'' we also prove an equidistribution result for iterated forward images of curves. To prove our results we systematically develop the idea of a positive closed \((1,1)\) current and its cohomology class on the inverse limit of all toric surfaces. This, in turn, relies upon a careful study of positive closed \((1,1)\) currents on individual toric surfaces. This framework may be useful in other contexts.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2795080709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795080709</sourcerecordid><originalsourceid>FETCH-proquest_journals_27950807093</originalsourceid><addsrcrecordid>eNqNykEKwjAQQNEgCBbtHQKuCzExpllLxQO4L2lNcEpt2swE8fa68ACu_uL9FSukUoeqPkq5YSXiIISQJyO1VgWzzZLhDkgJukwQJ_4CesRMHMl1MAK9eYiJU0zQc8wpuN7zp5txx9bBjejLX7dsf2lu52s1p7hkj9QOMafpS600VotaGGHVf9cHCKg3ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795080709</pqid></control><display><type>article</type><title>Equidistribution without stability for toric surface maps</title><source>Publicly Available Content (ProQuest)</source><creator>Diller, Jeffrey ; Roeder, Roland</creator><creatorcontrib>Diller, Jeffrey ; Roeder, Roland</creatorcontrib><description>We prove an equidistribution result for iterated preimages of curves by a large class of rational maps \(f:\mathbb{CP}^2\dashrightarrow\mathbb{CP}^2\) that cannot be birationally conjugated to algebraically stable maps. The maps, which include recent examples with transcendental first dynamical degree, are distinguished by the fact that they have constant Jacobian determinant relative to the natural holomorphic two form on the algebraic torus. Under the additional hypothesis that \(f\) has "small topological degree'' we also prove an equidistribution result for iterated forward images of curves. To prove our results we systematically develop the idea of a positive closed \((1,1)\) current and its cohomology class on the inverse limit of all toric surfaces. This, in turn, relies upon a careful study of positive closed \((1,1)\) currents on individual toric surfaces. This framework may be useful in other contexts.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology ; Surface stability ; Toruses</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2795080709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Diller, Jeffrey</creatorcontrib><creatorcontrib>Roeder, Roland</creatorcontrib><title>Equidistribution without stability for toric surface maps</title><title>arXiv.org</title><description>We prove an equidistribution result for iterated preimages of curves by a large class of rational maps \(f:\mathbb{CP}^2\dashrightarrow\mathbb{CP}^2\) that cannot be birationally conjugated to algebraically stable maps. The maps, which include recent examples with transcendental first dynamical degree, are distinguished by the fact that they have constant Jacobian determinant relative to the natural holomorphic two form on the algebraic torus. Under the additional hypothesis that \(f\) has "small topological degree'' we also prove an equidistribution result for iterated forward images of curves. To prove our results we systematically develop the idea of a positive closed \((1,1)\) current and its cohomology class on the inverse limit of all toric surfaces. This, in turn, relies upon a careful study of positive closed \((1,1)\) currents on individual toric surfaces. This framework may be useful in other contexts.</description><subject>Homology</subject><subject>Surface stability</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykEKwjAQQNEgCBbtHQKuCzExpllLxQO4L2lNcEpt2swE8fa68ACu_uL9FSukUoeqPkq5YSXiIISQJyO1VgWzzZLhDkgJukwQJ_4CesRMHMl1MAK9eYiJU0zQc8wpuN7zp5txx9bBjejLX7dsf2lu52s1p7hkj9QOMafpS600VotaGGHVf9cHCKg3ew</recordid><startdate>20230403</startdate><enddate>20230403</enddate><creator>Diller, Jeffrey</creator><creator>Roeder, Roland</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230403</creationdate><title>Equidistribution without stability for toric surface maps</title><author>Diller, Jeffrey ; Roeder, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27950807093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Homology</topic><topic>Surface stability</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Diller, Jeffrey</creatorcontrib><creatorcontrib>Roeder, Roland</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diller, Jeffrey</au><au>Roeder, Roland</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Equidistribution without stability for toric surface maps</atitle><jtitle>arXiv.org</jtitle><date>2023-04-03</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We prove an equidistribution result for iterated preimages of curves by a large class of rational maps \(f:\mathbb{CP}^2\dashrightarrow\mathbb{CP}^2\) that cannot be birationally conjugated to algebraically stable maps. The maps, which include recent examples with transcendental first dynamical degree, are distinguished by the fact that they have constant Jacobian determinant relative to the natural holomorphic two form on the algebraic torus. Under the additional hypothesis that \(f\) has "small topological degree'' we also prove an equidistribution result for iterated forward images of curves. To prove our results we systematically develop the idea of a positive closed \((1,1)\) current and its cohomology class on the inverse limit of all toric surfaces. This, in turn, relies upon a careful study of positive closed \((1,1)\) currents on individual toric surfaces. This framework may be useful in other contexts.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2795080709
source Publicly Available Content (ProQuest)
subjects Homology
Surface stability
Toruses
title Equidistribution without stability for toric surface maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Equidistribution%20without%20stability%20for%20toric%20surface%20maps&rft.jtitle=arXiv.org&rft.au=Diller,%20Jeffrey&rft.date=2023-04-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2795080709%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27950807093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2795080709&rft_id=info:pmid/&rfr_iscdi=true