Loading…

Environmental drivers of body size in North American bats

Bergmann's rule—which posits that larger animals live in colder areas—is thought to influence variation in body size within species across space and time, but evidence for this claim is mixed. We used Bayesian hierarchical models to test four competing hypotheses for spatiotemporal variation in...

Full description

Saved in:
Bibliographic Details
Published in:Functional ecology 2023-04, Vol.37 (4), p.1020-1032
Main Authors: Alston, Jesse M., Keinath, Douglas A., Willis, Craig K. R., Lausen, Cori L., O'Keefe, Joy M., Tyburec, Janet D., Broders, Hugh G., Moosman, Paul R., Carter, Timothy C., Chambers, Carol L., Gillam, Erin H., Geluso, Keith, Weller, Theodore J., Burles, Douglas W., Fletcher, Quinn E., Norquay, Kaleigh J. O., Goheen, Jacob R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3567-60a4fc13ffbdcdde480bed0e0c18043118980dbad93016c2b99515565ea425b3
cites cdi_FETCH-LOGICAL-c3567-60a4fc13ffbdcdde480bed0e0c18043118980dbad93016c2b99515565ea425b3
container_end_page 1032
container_issue 4
container_start_page 1020
container_title Functional ecology
container_volume 37
creator Alston, Jesse M.
Keinath, Douglas A.
Willis, Craig K. R.
Lausen, Cori L.
O'Keefe, Joy M.
Tyburec, Janet D.
Broders, Hugh G.
Moosman, Paul R.
Carter, Timothy C.
Chambers, Carol L.
Gillam, Erin H.
Geluso, Keith
Weller, Theodore J.
Burles, Douglas W.
Fletcher, Quinn E.
Norquay, Kaleigh J. O.
Goheen, Jacob R.
description Bergmann's rule—which posits that larger animals live in colder areas—is thought to influence variation in body size within species across space and time, but evidence for this claim is mixed. We used Bayesian hierarchical models to test four competing hypotheses for spatiotemporal variation in body size within 20 bat species across North America: (1) the heat conservation hypothesis, which posits that increased body size facilitates body heat conservation (and which is the traditional explanation for the mechanism underlying Bergmann's rule); (2) the heat mortality hypothesis, which posits that increased body size increases susceptibility to acute heat stress; (3) the resource availability hypothesis, which posits that increased body size is enabled in areas with more abundant food; and (4) the starvation resistance hypothesis, which posits that increased body size reduces susceptibility to starvation during acute food shortages. Spatial variation in body mass was most consistently (and negatively) correlated with mean annual temperature, supporting the heat conservation hypothesis. Across time, variation in body mass was most consistently (and positively) correlated with net primary productivity, supporting the resource availability hypothesis. Climate change could influence body size in animals through both changes in mean annual temperature and resource availability. Rapid reductions in body size associated with increasing temperatures have occurred in short‐lived, fecund species, but such reductions will be obscured by changes in resource availability in longer‐lived, less fecund species. Read the free Plain Language Summary for this article on the Journal blog. Read the free Plain Language Summary for this article on the Journal blog.
doi_str_mv 10.1111/1365-2435.14287
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2795186470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795186470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3567-60a4fc13ffbdcdde480bed0e0c18043118980dbad93016c2b99515565ea425b3</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMoWKtrtwHX0-Y9ybKU1gpFN92HvAZT2klNppX665064ta7-eByvnvhAPCI0QT3M8VU8IowyieYEVlfgdHf5hqMEBGqkkzQW3BXyhYhpDghI6AW7Snm1O5D25kd9DmeQi4wNdAmf4YlfgUYW_iacvcOZ_uQozMttKYr9-CmMbsSHn5zDDbLxWa-qtZvzy_z2bpylIu6EsiwxmHaNNY77wOTyAaPAnJYIkYxlkoib41XFGHhiFWKY84FD4YRbukYPA1nDzl9HEPp9DYdc9t_1KTuUSlYjXpqOlAup1JyaPQhx73JZ42RvujRFxn6IkP_6OkbfGh8xl04_4fr5WI-9L4BCrFljA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795186470</pqid></control><display><type>article</type><title>Environmental drivers of body size in North American bats</title><source>Wiley</source><creator>Alston, Jesse M. ; Keinath, Douglas A. ; Willis, Craig K. R. ; Lausen, Cori L. ; O'Keefe, Joy M. ; Tyburec, Janet D. ; Broders, Hugh G. ; Moosman, Paul R. ; Carter, Timothy C. ; Chambers, Carol L. ; Gillam, Erin H. ; Geluso, Keith ; Weller, Theodore J. ; Burles, Douglas W. ; Fletcher, Quinn E. ; Norquay, Kaleigh J. O. ; Goheen, Jacob R.</creator><creatorcontrib>Alston, Jesse M. ; Keinath, Douglas A. ; Willis, Craig K. R. ; Lausen, Cori L. ; O'Keefe, Joy M. ; Tyburec, Janet D. ; Broders, Hugh G. ; Moosman, Paul R. ; Carter, Timothy C. ; Chambers, Carol L. ; Gillam, Erin H. ; Geluso, Keith ; Weller, Theodore J. ; Burles, Douglas W. ; Fletcher, Quinn E. ; Norquay, Kaleigh J. O. ; Goheen, Jacob R.</creatorcontrib><description>Bergmann's rule—which posits that larger animals live in colder areas—is thought to influence variation in body size within species across space and time, but evidence for this claim is mixed. We used Bayesian hierarchical models to test four competing hypotheses for spatiotemporal variation in body size within 20 bat species across North America: (1) the heat conservation hypothesis, which posits that increased body size facilitates body heat conservation (and which is the traditional explanation for the mechanism underlying Bergmann's rule); (2) the heat mortality hypothesis, which posits that increased body size increases susceptibility to acute heat stress; (3) the resource availability hypothesis, which posits that increased body size is enabled in areas with more abundant food; and (4) the starvation resistance hypothesis, which posits that increased body size reduces susceptibility to starvation during acute food shortages. Spatial variation in body mass was most consistently (and negatively) correlated with mean annual temperature, supporting the heat conservation hypothesis. Across time, variation in body mass was most consistently (and positively) correlated with net primary productivity, supporting the resource availability hypothesis. Climate change could influence body size in animals through both changes in mean annual temperature and resource availability. Rapid reductions in body size associated with increasing temperatures have occurred in short‐lived, fecund species, but such reductions will be obscured by changes in resource availability in longer‐lived, less fecund species. Read the free Plain Language Summary for this article on the Journal blog. Read the free Plain Language Summary for this article on the Journal blog.</description><identifier>ISSN: 0269-8463</identifier><identifier>EISSN: 1365-2435</identifier><identifier>DOI: 10.1111/1365-2435.14287</identifier><language>eng</language><publisher>London: Wiley Subscription Services, Inc</publisher><subject>Animals ; Availability ; Bats ; Bayesian analysis ; Bayesian hierarchical modelling ; Bergmann's rule ; Body mass ; Body size ; body size clines ; Chiroptera ; Climate change ; Conservation ; Food ; geographic information systems ; Heat ; Heat stress ; Heat tolerance ; Hypotheses ; Mathematical models ; Net Primary Productivity ; primary productivity ; Resource availability ; Spatial variations ; Starvation</subject><ispartof>Functional ecology, 2023-04, Vol.37 (4), p.1020-1032</ispartof><rights>2023 The Authors. Functional Ecology © 2023 British Ecological Society.</rights><rights>2023 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3567-60a4fc13ffbdcdde480bed0e0c18043118980dbad93016c2b99515565ea425b3</citedby><cites>FETCH-LOGICAL-c3567-60a4fc13ffbdcdde480bed0e0c18043118980dbad93016c2b99515565ea425b3</cites><orcidid>0000-0002-0985-8607 ; 0000-0002-2914-5225 ; 0000-0002-2524-4672 ; 0000-0001-5309-7625 ; 0000-0002-1755-1605 ; 0000-0003-4762-3566 ; 0000-0001-9074-6268 ; 0000-0002-6012-1803 ; 0000-0002-6151-8079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alston, Jesse M.</creatorcontrib><creatorcontrib>Keinath, Douglas A.</creatorcontrib><creatorcontrib>Willis, Craig K. R.</creatorcontrib><creatorcontrib>Lausen, Cori L.</creatorcontrib><creatorcontrib>O'Keefe, Joy M.</creatorcontrib><creatorcontrib>Tyburec, Janet D.</creatorcontrib><creatorcontrib>Broders, Hugh G.</creatorcontrib><creatorcontrib>Moosman, Paul R.</creatorcontrib><creatorcontrib>Carter, Timothy C.</creatorcontrib><creatorcontrib>Chambers, Carol L.</creatorcontrib><creatorcontrib>Gillam, Erin H.</creatorcontrib><creatorcontrib>Geluso, Keith</creatorcontrib><creatorcontrib>Weller, Theodore J.</creatorcontrib><creatorcontrib>Burles, Douglas W.</creatorcontrib><creatorcontrib>Fletcher, Quinn E.</creatorcontrib><creatorcontrib>Norquay, Kaleigh J. O.</creatorcontrib><creatorcontrib>Goheen, Jacob R.</creatorcontrib><title>Environmental drivers of body size in North American bats</title><title>Functional ecology</title><description>Bergmann's rule—which posits that larger animals live in colder areas—is thought to influence variation in body size within species across space and time, but evidence for this claim is mixed. We used Bayesian hierarchical models to test four competing hypotheses for spatiotemporal variation in body size within 20 bat species across North America: (1) the heat conservation hypothesis, which posits that increased body size facilitates body heat conservation (and which is the traditional explanation for the mechanism underlying Bergmann's rule); (2) the heat mortality hypothesis, which posits that increased body size increases susceptibility to acute heat stress; (3) the resource availability hypothesis, which posits that increased body size is enabled in areas with more abundant food; and (4) the starvation resistance hypothesis, which posits that increased body size reduces susceptibility to starvation during acute food shortages. Spatial variation in body mass was most consistently (and negatively) correlated with mean annual temperature, supporting the heat conservation hypothesis. Across time, variation in body mass was most consistently (and positively) correlated with net primary productivity, supporting the resource availability hypothesis. Climate change could influence body size in animals through both changes in mean annual temperature and resource availability. Rapid reductions in body size associated with increasing temperatures have occurred in short‐lived, fecund species, but such reductions will be obscured by changes in resource availability in longer‐lived, less fecund species. Read the free Plain Language Summary for this article on the Journal blog. Read the free Plain Language Summary for this article on the Journal blog.</description><subject>Animals</subject><subject>Availability</subject><subject>Bats</subject><subject>Bayesian analysis</subject><subject>Bayesian hierarchical modelling</subject><subject>Bergmann's rule</subject><subject>Body mass</subject><subject>Body size</subject><subject>body size clines</subject><subject>Chiroptera</subject><subject>Climate change</subject><subject>Conservation</subject><subject>Food</subject><subject>geographic information systems</subject><subject>Heat</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>Hypotheses</subject><subject>Mathematical models</subject><subject>Net Primary Productivity</subject><subject>primary productivity</subject><subject>Resource availability</subject><subject>Spatial variations</subject><subject>Starvation</subject><issn>0269-8463</issn><issn>1365-2435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEURoMoWKtrtwHX0-Y9ybKU1gpFN92HvAZT2klNppX665064ta7-eByvnvhAPCI0QT3M8VU8IowyieYEVlfgdHf5hqMEBGqkkzQW3BXyhYhpDghI6AW7Snm1O5D25kd9DmeQi4wNdAmf4YlfgUYW_iacvcOZ_uQozMttKYr9-CmMbsSHn5zDDbLxWa-qtZvzy_z2bpylIu6EsiwxmHaNNY77wOTyAaPAnJYIkYxlkoib41XFGHhiFWKY84FD4YRbukYPA1nDzl9HEPp9DYdc9t_1KTuUSlYjXpqOlAup1JyaPQhx73JZ42RvujRFxn6IkP_6OkbfGh8xl04_4fr5WI-9L4BCrFljA</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Alston, Jesse M.</creator><creator>Keinath, Douglas A.</creator><creator>Willis, Craig K. R.</creator><creator>Lausen, Cori L.</creator><creator>O'Keefe, Joy M.</creator><creator>Tyburec, Janet D.</creator><creator>Broders, Hugh G.</creator><creator>Moosman, Paul R.</creator><creator>Carter, Timothy C.</creator><creator>Chambers, Carol L.</creator><creator>Gillam, Erin H.</creator><creator>Geluso, Keith</creator><creator>Weller, Theodore J.</creator><creator>Burles, Douglas W.</creator><creator>Fletcher, Quinn E.</creator><creator>Norquay, Kaleigh J. O.</creator><creator>Goheen, Jacob R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-0985-8607</orcidid><orcidid>https://orcid.org/0000-0002-2914-5225</orcidid><orcidid>https://orcid.org/0000-0002-2524-4672</orcidid><orcidid>https://orcid.org/0000-0001-5309-7625</orcidid><orcidid>https://orcid.org/0000-0002-1755-1605</orcidid><orcidid>https://orcid.org/0000-0003-4762-3566</orcidid><orcidid>https://orcid.org/0000-0001-9074-6268</orcidid><orcidid>https://orcid.org/0000-0002-6012-1803</orcidid><orcidid>https://orcid.org/0000-0002-6151-8079</orcidid></search><sort><creationdate>202304</creationdate><title>Environmental drivers of body size in North American bats</title><author>Alston, Jesse M. ; Keinath, Douglas A. ; Willis, Craig K. R. ; Lausen, Cori L. ; O'Keefe, Joy M. ; Tyburec, Janet D. ; Broders, Hugh G. ; Moosman, Paul R. ; Carter, Timothy C. ; Chambers, Carol L. ; Gillam, Erin H. ; Geluso, Keith ; Weller, Theodore J. ; Burles, Douglas W. ; Fletcher, Quinn E. ; Norquay, Kaleigh J. O. ; Goheen, Jacob R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3567-60a4fc13ffbdcdde480bed0e0c18043118980dbad93016c2b99515565ea425b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Availability</topic><topic>Bats</topic><topic>Bayesian analysis</topic><topic>Bayesian hierarchical modelling</topic><topic>Bergmann's rule</topic><topic>Body mass</topic><topic>Body size</topic><topic>body size clines</topic><topic>Chiroptera</topic><topic>Climate change</topic><topic>Conservation</topic><topic>Food</topic><topic>geographic information systems</topic><topic>Heat</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>Hypotheses</topic><topic>Mathematical models</topic><topic>Net Primary Productivity</topic><topic>primary productivity</topic><topic>Resource availability</topic><topic>Spatial variations</topic><topic>Starvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alston, Jesse M.</creatorcontrib><creatorcontrib>Keinath, Douglas A.</creatorcontrib><creatorcontrib>Willis, Craig K. R.</creatorcontrib><creatorcontrib>Lausen, Cori L.</creatorcontrib><creatorcontrib>O'Keefe, Joy M.</creatorcontrib><creatorcontrib>Tyburec, Janet D.</creatorcontrib><creatorcontrib>Broders, Hugh G.</creatorcontrib><creatorcontrib>Moosman, Paul R.</creatorcontrib><creatorcontrib>Carter, Timothy C.</creatorcontrib><creatorcontrib>Chambers, Carol L.</creatorcontrib><creatorcontrib>Gillam, Erin H.</creatorcontrib><creatorcontrib>Geluso, Keith</creatorcontrib><creatorcontrib>Weller, Theodore J.</creatorcontrib><creatorcontrib>Burles, Douglas W.</creatorcontrib><creatorcontrib>Fletcher, Quinn E.</creatorcontrib><creatorcontrib>Norquay, Kaleigh J. O.</creatorcontrib><creatorcontrib>Goheen, Jacob R.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Functional ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alston, Jesse M.</au><au>Keinath, Douglas A.</au><au>Willis, Craig K. R.</au><au>Lausen, Cori L.</au><au>O'Keefe, Joy M.</au><au>Tyburec, Janet D.</au><au>Broders, Hugh G.</au><au>Moosman, Paul R.</au><au>Carter, Timothy C.</au><au>Chambers, Carol L.</au><au>Gillam, Erin H.</au><au>Geluso, Keith</au><au>Weller, Theodore J.</au><au>Burles, Douglas W.</au><au>Fletcher, Quinn E.</au><au>Norquay, Kaleigh J. O.</au><au>Goheen, Jacob R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental drivers of body size in North American bats</atitle><jtitle>Functional ecology</jtitle><date>2023-04</date><risdate>2023</risdate><volume>37</volume><issue>4</issue><spage>1020</spage><epage>1032</epage><pages>1020-1032</pages><issn>0269-8463</issn><eissn>1365-2435</eissn><abstract>Bergmann's rule—which posits that larger animals live in colder areas—is thought to influence variation in body size within species across space and time, but evidence for this claim is mixed. We used Bayesian hierarchical models to test four competing hypotheses for spatiotemporal variation in body size within 20 bat species across North America: (1) the heat conservation hypothesis, which posits that increased body size facilitates body heat conservation (and which is the traditional explanation for the mechanism underlying Bergmann's rule); (2) the heat mortality hypothesis, which posits that increased body size increases susceptibility to acute heat stress; (3) the resource availability hypothesis, which posits that increased body size is enabled in areas with more abundant food; and (4) the starvation resistance hypothesis, which posits that increased body size reduces susceptibility to starvation during acute food shortages. Spatial variation in body mass was most consistently (and negatively) correlated with mean annual temperature, supporting the heat conservation hypothesis. Across time, variation in body mass was most consistently (and positively) correlated with net primary productivity, supporting the resource availability hypothesis. Climate change could influence body size in animals through both changes in mean annual temperature and resource availability. Rapid reductions in body size associated with increasing temperatures have occurred in short‐lived, fecund species, but such reductions will be obscured by changes in resource availability in longer‐lived, less fecund species. Read the free Plain Language Summary for this article on the Journal blog. Read the free Plain Language Summary for this article on the Journal blog.</abstract><cop>London</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2435.14287</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0985-8607</orcidid><orcidid>https://orcid.org/0000-0002-2914-5225</orcidid><orcidid>https://orcid.org/0000-0002-2524-4672</orcidid><orcidid>https://orcid.org/0000-0001-5309-7625</orcidid><orcidid>https://orcid.org/0000-0002-1755-1605</orcidid><orcidid>https://orcid.org/0000-0003-4762-3566</orcidid><orcidid>https://orcid.org/0000-0001-9074-6268</orcidid><orcidid>https://orcid.org/0000-0002-6012-1803</orcidid><orcidid>https://orcid.org/0000-0002-6151-8079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0269-8463
ispartof Functional ecology, 2023-04, Vol.37 (4), p.1020-1032
issn 0269-8463
1365-2435
language eng
recordid cdi_proquest_journals_2795186470
source Wiley
subjects Animals
Availability
Bats
Bayesian analysis
Bayesian hierarchical modelling
Bergmann's rule
Body mass
Body size
body size clines
Chiroptera
Climate change
Conservation
Food
geographic information systems
Heat
Heat stress
Heat tolerance
Hypotheses
Mathematical models
Net Primary Productivity
primary productivity
Resource availability
Spatial variations
Starvation
title Environmental drivers of body size in North American bats
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20drivers%20of%20body%20size%20in%20North%20American%20bats&rft.jtitle=Functional%20ecology&rft.au=Alston,%20Jesse%20M.&rft.date=2023-04&rft.volume=37&rft.issue=4&rft.spage=1020&rft.epage=1032&rft.pages=1020-1032&rft.issn=0269-8463&rft.eissn=1365-2435&rft_id=info:doi/10.1111/1365-2435.14287&rft_dat=%3Cproquest_cross%3E2795186470%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3567-60a4fc13ffbdcdde480bed0e0c18043118980dbad93016c2b99515565ea425b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2795186470&rft_id=info:pmid/&rfr_iscdi=true