Loading…

Lattice strain and interfacial engineering of a Bi-based electrocatalyst for highly selective CO2 electroreduction to formate

Surface strain tuning in a coupled heterostructure efficiently engineers the catalytic performance of heterogeneous catalysts by altering the electronic structures and boosting electron transport. Generally, Bi-based catalysts are more favorable than ZnO for CO 2 electroreduction to formate, but Bi...

Full description

Saved in:
Bibliographic Details
Published in:Science China materials 2023-04, Vol.66 (4), p.1398-1406
Main Authors: Wei, Xiaoqian, Li, Zijian, Jang, Haeseong, Kim, Min Gyu, Qin, Qing, Liu, Xien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-17107e58362d568022ea2c37dd1950ab507e5eba3c1bdfa0ad829fe632c78f3f3
cites cdi_FETCH-LOGICAL-c359t-17107e58362d568022ea2c37dd1950ab507e5eba3c1bdfa0ad829fe632c78f3f3
container_end_page 1406
container_issue 4
container_start_page 1398
container_title Science China materials
container_volume 66
creator Wei, Xiaoqian
Li, Zijian
Jang, Haeseong
Kim, Min Gyu
Qin, Qing
Liu, Xien
description Surface strain tuning in a coupled heterostructure efficiently engineers the catalytic performance of heterogeneous catalysts by altering the electronic structures and boosting electron transport. Generally, Bi-based catalysts are more favorable than ZnO for CO 2 electroreduction to formate, but Bi is much more costly than Zn. Herein, a new Bi 2 O 2 CO 3 /ZnO heterojunction catalyst with porous nanoplate morphology is synthesized through a hexadecyl trimethyl ammonium bromide-templated hydrothermal reaction for a highly efficient catalytic CO 2 reduction reaction (CO 2 RR) to produce formate. The Bi 2 O 2 CO 3 /ZnO catalyst shows a maximum Faradaic efficiency of 92% for formate production at −1.0 V vs. reversible hydrogen electrode (RHE) and a large partial current density of −200 mA mg Bi −1 at −1.2 V vs. RHE. More importantly, the mass activity of Bi 2 O 2 CO 3 /ZnO normalized by Bi mass is an approximately 3.1-fold enhancement over that of the pristine Bi 2 O 2 CO 3 at −1.2 V vs. RHE. By coupling X-ray photoelectron spectroscopy and adsorption spectroscopy measurements, the charge transfer from the Zn atom to the Bi atom through a heterogeneous interface results in an electron-enriched Bi 2 O 2 CO 3 surface, which facilitates CO 2 capture and activation. Meanwhile, compressive stress produced on the catalyst surface helps optimize the adsorption energy of the reaction intermediate, synergistically enhancing the catalytic selectivity and activity of Bi 2 O 2 CO 3 /ZnO for electrochemical CO 2 reduction to formate.
doi_str_mv 10.1007/s40843-022-2346-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2795521319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795521319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-17107e58362d568022ea2c37dd1950ab507e5eba3c1bdfa0ad829fe632c78f3f3</originalsourceid><addsrcrecordid>eNp1UDtPwzAQjhBIVNAfwGaJ2eBHnMQjVLykSl1gti7OuXWVJsV2kTrw30kIiInpTvc97u7LsivObjhj5W3MWZVLyoSgQuYFVSfZTHCtaa4YPx16phWthCjOs3mMW8YYLxTnuppln0tIyVskMQXwHYGuIb5LGBxYDy3Bbu07xOC7NekdAXLvaQ0RG4It2hR6CwnaY0zE9YFs_HrTHkn8xvwHksVK_BIDNodh2Hck9SN5BwkvszMHbcT5T73I3h4fXhfPdLl6elncLamVSifKS85KVJUsRKOKavgTQVhZNg3XikGtRhRrkJbXjQMGTSW0w0IKW1ZOOnmRXU---9C_HzAms-0PoRtWGlFqpQSXXA8sPrFs6GMM6Mw--B2Eo-HMjEGbKWgzHGDGoI0aNGLSxP2YEYY_5_9FXynqggQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795521319</pqid></control><display><type>article</type><title>Lattice strain and interfacial engineering of a Bi-based electrocatalyst for highly selective CO2 electroreduction to formate</title><source>Springer Nature</source><creator>Wei, Xiaoqian ; Li, Zijian ; Jang, Haeseong ; Kim, Min Gyu ; Qin, Qing ; Liu, Xien</creator><creatorcontrib>Wei, Xiaoqian ; Li, Zijian ; Jang, Haeseong ; Kim, Min Gyu ; Qin, Qing ; Liu, Xien</creatorcontrib><description>Surface strain tuning in a coupled heterostructure efficiently engineers the catalytic performance of heterogeneous catalysts by altering the electronic structures and boosting electron transport. Generally, Bi-based catalysts are more favorable than ZnO for CO 2 electroreduction to formate, but Bi is much more costly than Zn. Herein, a new Bi 2 O 2 CO 3 /ZnO heterojunction catalyst with porous nanoplate morphology is synthesized through a hexadecyl trimethyl ammonium bromide-templated hydrothermal reaction for a highly efficient catalytic CO 2 reduction reaction (CO 2 RR) to produce formate. The Bi 2 O 2 CO 3 /ZnO catalyst shows a maximum Faradaic efficiency of 92% for formate production at −1.0 V vs. reversible hydrogen electrode (RHE) and a large partial current density of −200 mA mg Bi −1 at −1.2 V vs. RHE. More importantly, the mass activity of Bi 2 O 2 CO 3 /ZnO normalized by Bi mass is an approximately 3.1-fold enhancement over that of the pristine Bi 2 O 2 CO 3 at −1.2 V vs. RHE. By coupling X-ray photoelectron spectroscopy and adsorption spectroscopy measurements, the charge transfer from the Zn atom to the Bi atom through a heterogeneous interface results in an electron-enriched Bi 2 O 2 CO 3 surface, which facilitates CO 2 capture and activation. Meanwhile, compressive stress produced on the catalyst surface helps optimize the adsorption energy of the reaction intermediate, synergistically enhancing the catalytic selectivity and activity of Bi 2 O 2 CO 3 /ZnO for electrochemical CO 2 reduction to formate.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-022-2346-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Adsorption ; Carbon dioxide ; Carbon sequestration ; Catalysts ; Cetyltrimethylammonium bromide ; Charge transfer ; Chemical reduction ; Chemistry and Materials Science ; Chemistry/Food Science ; Compressive properties ; Electrocatalysts ; Electron transport ; Electrowinning ; Heterojunctions ; Heterostructures ; Hydrothermal reactions ; Lattice strain ; Magnesium compounds ; Materials Science ; Photoelectrons ; Reaction intermediates ; Spectrum analysis ; Surface chemistry ; Zinc oxide</subject><ispartof>Science China materials, 2023-04, Vol.66 (4), p.1398-1406</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-17107e58362d568022ea2c37dd1950ab507e5eba3c1bdfa0ad829fe632c78f3f3</citedby><cites>FETCH-LOGICAL-c359t-17107e58362d568022ea2c37dd1950ab507e5eba3c1bdfa0ad829fe632c78f3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wei, Xiaoqian</creatorcontrib><creatorcontrib>Li, Zijian</creatorcontrib><creatorcontrib>Jang, Haeseong</creatorcontrib><creatorcontrib>Kim, Min Gyu</creatorcontrib><creatorcontrib>Qin, Qing</creatorcontrib><creatorcontrib>Liu, Xien</creatorcontrib><title>Lattice strain and interfacial engineering of a Bi-based electrocatalyst for highly selective CO2 electroreduction to formate</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Surface strain tuning in a coupled heterostructure efficiently engineers the catalytic performance of heterogeneous catalysts by altering the electronic structures and boosting electron transport. Generally, Bi-based catalysts are more favorable than ZnO for CO 2 electroreduction to formate, but Bi is much more costly than Zn. Herein, a new Bi 2 O 2 CO 3 /ZnO heterojunction catalyst with porous nanoplate morphology is synthesized through a hexadecyl trimethyl ammonium bromide-templated hydrothermal reaction for a highly efficient catalytic CO 2 reduction reaction (CO 2 RR) to produce formate. The Bi 2 O 2 CO 3 /ZnO catalyst shows a maximum Faradaic efficiency of 92% for formate production at −1.0 V vs. reversible hydrogen electrode (RHE) and a large partial current density of −200 mA mg Bi −1 at −1.2 V vs. RHE. More importantly, the mass activity of Bi 2 O 2 CO 3 /ZnO normalized by Bi mass is an approximately 3.1-fold enhancement over that of the pristine Bi 2 O 2 CO 3 at −1.2 V vs. RHE. By coupling X-ray photoelectron spectroscopy and adsorption spectroscopy measurements, the charge transfer from the Zn atom to the Bi atom through a heterogeneous interface results in an electron-enriched Bi 2 O 2 CO 3 surface, which facilitates CO 2 capture and activation. Meanwhile, compressive stress produced on the catalyst surface helps optimize the adsorption energy of the reaction intermediate, synergistically enhancing the catalytic selectivity and activity of Bi 2 O 2 CO 3 /ZnO for electrochemical CO 2 reduction to formate.</description><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Catalysts</subject><subject>Cetyltrimethylammonium bromide</subject><subject>Charge transfer</subject><subject>Chemical reduction</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Compressive properties</subject><subject>Electrocatalysts</subject><subject>Electron transport</subject><subject>Electrowinning</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrothermal reactions</subject><subject>Lattice strain</subject><subject>Magnesium compounds</subject><subject>Materials Science</subject><subject>Photoelectrons</subject><subject>Reaction intermediates</subject><subject>Spectrum analysis</subject><subject>Surface chemistry</subject><subject>Zinc oxide</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UDtPwzAQjhBIVNAfwGaJ2eBHnMQjVLykSl1gti7OuXWVJsV2kTrw30kIiInpTvc97u7LsivObjhj5W3MWZVLyoSgQuYFVSfZTHCtaa4YPx16phWthCjOs3mMW8YYLxTnuppln0tIyVskMQXwHYGuIb5LGBxYDy3Bbu07xOC7NekdAXLvaQ0RG4It2hR6CwnaY0zE9YFs_HrTHkn8xvwHksVK_BIDNodh2Hck9SN5BwkvszMHbcT5T73I3h4fXhfPdLl6elncLamVSifKS85KVJUsRKOKavgTQVhZNg3XikGtRhRrkJbXjQMGTSW0w0IKW1ZOOnmRXU---9C_HzAms-0PoRtWGlFqpQSXXA8sPrFs6GMM6Mw--B2Eo-HMjEGbKWgzHGDGoI0aNGLSxP2YEYY_5_9FXynqggQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Wei, Xiaoqian</creator><creator>Li, Zijian</creator><creator>Jang, Haeseong</creator><creator>Kim, Min Gyu</creator><creator>Qin, Qing</creator><creator>Liu, Xien</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Lattice strain and interfacial engineering of a Bi-based electrocatalyst for highly selective CO2 electroreduction to formate</title><author>Wei, Xiaoqian ; Li, Zijian ; Jang, Haeseong ; Kim, Min Gyu ; Qin, Qing ; Liu, Xien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-17107e58362d568022ea2c37dd1950ab507e5eba3c1bdfa0ad829fe632c78f3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Catalysts</topic><topic>Cetyltrimethylammonium bromide</topic><topic>Charge transfer</topic><topic>Chemical reduction</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Compressive properties</topic><topic>Electrocatalysts</topic><topic>Electron transport</topic><topic>Electrowinning</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrothermal reactions</topic><topic>Lattice strain</topic><topic>Magnesium compounds</topic><topic>Materials Science</topic><topic>Photoelectrons</topic><topic>Reaction intermediates</topic><topic>Spectrum analysis</topic><topic>Surface chemistry</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xiaoqian</creatorcontrib><creatorcontrib>Li, Zijian</creatorcontrib><creatorcontrib>Jang, Haeseong</creatorcontrib><creatorcontrib>Kim, Min Gyu</creatorcontrib><creatorcontrib>Qin, Qing</creatorcontrib><creatorcontrib>Liu, Xien</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xiaoqian</au><au>Li, Zijian</au><au>Jang, Haeseong</au><au>Kim, Min Gyu</au><au>Qin, Qing</au><au>Liu, Xien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice strain and interfacial engineering of a Bi-based electrocatalyst for highly selective CO2 electroreduction to formate</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>66</volume><issue>4</issue><spage>1398</spage><epage>1406</epage><pages>1398-1406</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Surface strain tuning in a coupled heterostructure efficiently engineers the catalytic performance of heterogeneous catalysts by altering the electronic structures and boosting electron transport. Generally, Bi-based catalysts are more favorable than ZnO for CO 2 electroreduction to formate, but Bi is much more costly than Zn. Herein, a new Bi 2 O 2 CO 3 /ZnO heterojunction catalyst with porous nanoplate morphology is synthesized through a hexadecyl trimethyl ammonium bromide-templated hydrothermal reaction for a highly efficient catalytic CO 2 reduction reaction (CO 2 RR) to produce formate. The Bi 2 O 2 CO 3 /ZnO catalyst shows a maximum Faradaic efficiency of 92% for formate production at −1.0 V vs. reversible hydrogen electrode (RHE) and a large partial current density of −200 mA mg Bi −1 at −1.2 V vs. RHE. More importantly, the mass activity of Bi 2 O 2 CO 3 /ZnO normalized by Bi mass is an approximately 3.1-fold enhancement over that of the pristine Bi 2 O 2 CO 3 at −1.2 V vs. RHE. By coupling X-ray photoelectron spectroscopy and adsorption spectroscopy measurements, the charge transfer from the Zn atom to the Bi atom through a heterogeneous interface results in an electron-enriched Bi 2 O 2 CO 3 surface, which facilitates CO 2 capture and activation. Meanwhile, compressive stress produced on the catalyst surface helps optimize the adsorption energy of the reaction intermediate, synergistically enhancing the catalytic selectivity and activity of Bi 2 O 2 CO 3 /ZnO for electrochemical CO 2 reduction to formate.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-022-2346-5</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-8226
ispartof Science China materials, 2023-04, Vol.66 (4), p.1398-1406
issn 2095-8226
2199-4501
language eng
recordid cdi_proquest_journals_2795521319
source Springer Nature
subjects Adsorption
Carbon dioxide
Carbon sequestration
Catalysts
Cetyltrimethylammonium bromide
Charge transfer
Chemical reduction
Chemistry and Materials Science
Chemistry/Food Science
Compressive properties
Electrocatalysts
Electron transport
Electrowinning
Heterojunctions
Heterostructures
Hydrothermal reactions
Lattice strain
Magnesium compounds
Materials Science
Photoelectrons
Reaction intermediates
Spectrum analysis
Surface chemistry
Zinc oxide
title Lattice strain and interfacial engineering of a Bi-based electrocatalyst for highly selective CO2 electroreduction to formate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20strain%20and%20interfacial%20engineering%20of%20a%20Bi-based%20electrocatalyst%20for%20highly%20selective%20CO2%20electroreduction%20to%20formate&rft.jtitle=Science%20China%20materials&rft.au=Wei,%20Xiaoqian&rft.date=2023-04-01&rft.volume=66&rft.issue=4&rft.spage=1398&rft.epage=1406&rft.pages=1398-1406&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-022-2346-5&rft_dat=%3Cproquest_cross%3E2795521319%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-17107e58362d568022ea2c37dd1950ab507e5eba3c1bdfa0ad829fe632c78f3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2795521319&rft_id=info:pmid/&rfr_iscdi=true