Loading…
Lattice strain and interfacial engineering of a Bi-based electrocatalyst for highly selective CO2 electroreduction to formate
Surface strain tuning in a coupled heterostructure efficiently engineers the catalytic performance of heterogeneous catalysts by altering the electronic structures and boosting electron transport. Generally, Bi-based catalysts are more favorable than ZnO for CO 2 electroreduction to formate, but Bi...
Saved in:
Published in: | Science China materials 2023-04, Vol.66 (4), p.1398-1406 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-17107e58362d568022ea2c37dd1950ab507e5eba3c1bdfa0ad829fe632c78f3f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-17107e58362d568022ea2c37dd1950ab507e5eba3c1bdfa0ad829fe632c78f3f3 |
container_end_page | 1406 |
container_issue | 4 |
container_start_page | 1398 |
container_title | Science China materials |
container_volume | 66 |
creator | Wei, Xiaoqian Li, Zijian Jang, Haeseong Kim, Min Gyu Qin, Qing Liu, Xien |
description | Surface strain tuning in a coupled heterostructure efficiently engineers the catalytic performance of heterogeneous catalysts by altering the electronic structures and boosting electron transport. Generally, Bi-based catalysts are more favorable than ZnO for CO
2
electroreduction to formate, but Bi is much more costly than Zn. Herein, a new Bi
2
O
2
CO
3
/ZnO heterojunction catalyst with porous nanoplate morphology is synthesized through a hexadecyl trimethyl ammonium bromide-templated hydrothermal reaction for a highly efficient catalytic CO
2
reduction reaction (CO
2
RR) to produce formate. The Bi
2
O
2
CO
3
/ZnO catalyst shows a maximum Faradaic efficiency of 92% for formate production at −1.0 V vs. reversible hydrogen electrode (RHE) and a large partial current density of −200 mA mg
Bi
−1
at −1.2 V vs. RHE. More importantly, the mass activity of Bi
2
O
2
CO
3
/ZnO normalized by Bi mass is an approximately 3.1-fold enhancement over that of the pristine Bi
2
O
2
CO
3
at −1.2 V vs. RHE. By coupling X-ray photoelectron spectroscopy and adsorption spectroscopy measurements, the charge transfer from the Zn atom to the Bi atom through a heterogeneous interface results in an electron-enriched Bi
2
O
2
CO
3
surface, which facilitates CO
2
capture and activation. Meanwhile, compressive stress produced on the catalyst surface helps optimize the adsorption energy of the reaction intermediate, synergistically enhancing the catalytic selectivity and activity of Bi
2
O
2
CO
3
/ZnO for electrochemical CO
2
reduction to formate. |
doi_str_mv | 10.1007/s40843-022-2346-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2795521319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795521319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-17107e58362d568022ea2c37dd1950ab507e5eba3c1bdfa0ad829fe632c78f3f3</originalsourceid><addsrcrecordid>eNp1UDtPwzAQjhBIVNAfwGaJ2eBHnMQjVLykSl1gti7OuXWVJsV2kTrw30kIiInpTvc97u7LsivObjhj5W3MWZVLyoSgQuYFVSfZTHCtaa4YPx16phWthCjOs3mMW8YYLxTnuppln0tIyVskMQXwHYGuIb5LGBxYDy3Bbu07xOC7NekdAXLvaQ0RG4It2hR6CwnaY0zE9YFs_HrTHkn8xvwHksVK_BIDNodh2Hck9SN5BwkvszMHbcT5T73I3h4fXhfPdLl6elncLamVSifKS85KVJUsRKOKavgTQVhZNg3XikGtRhRrkJbXjQMGTSW0w0IKW1ZOOnmRXU---9C_HzAms-0PoRtWGlFqpQSXXA8sPrFs6GMM6Mw--B2Eo-HMjEGbKWgzHGDGoI0aNGLSxP2YEYY_5_9FXynqggQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795521319</pqid></control><display><type>article</type><title>Lattice strain and interfacial engineering of a Bi-based electrocatalyst for highly selective CO2 electroreduction to formate</title><source>Springer Nature</source><creator>Wei, Xiaoqian ; Li, Zijian ; Jang, Haeseong ; Kim, Min Gyu ; Qin, Qing ; Liu, Xien</creator><creatorcontrib>Wei, Xiaoqian ; Li, Zijian ; Jang, Haeseong ; Kim, Min Gyu ; Qin, Qing ; Liu, Xien</creatorcontrib><description>Surface strain tuning in a coupled heterostructure efficiently engineers the catalytic performance of heterogeneous catalysts by altering the electronic structures and boosting electron transport. Generally, Bi-based catalysts are more favorable than ZnO for CO
2
electroreduction to formate, but Bi is much more costly than Zn. Herein, a new Bi
2
O
2
CO
3
/ZnO heterojunction catalyst with porous nanoplate morphology is synthesized through a hexadecyl trimethyl ammonium bromide-templated hydrothermal reaction for a highly efficient catalytic CO
2
reduction reaction (CO
2
RR) to produce formate. The Bi
2
O
2
CO
3
/ZnO catalyst shows a maximum Faradaic efficiency of 92% for formate production at −1.0 V vs. reversible hydrogen electrode (RHE) and a large partial current density of −200 mA mg
Bi
−1
at −1.2 V vs. RHE. More importantly, the mass activity of Bi
2
O
2
CO
3
/ZnO normalized by Bi mass is an approximately 3.1-fold enhancement over that of the pristine Bi
2
O
2
CO
3
at −1.2 V vs. RHE. By coupling X-ray photoelectron spectroscopy and adsorption spectroscopy measurements, the charge transfer from the Zn atom to the Bi atom through a heterogeneous interface results in an electron-enriched Bi
2
O
2
CO
3
surface, which facilitates CO
2
capture and activation. Meanwhile, compressive stress produced on the catalyst surface helps optimize the adsorption energy of the reaction intermediate, synergistically enhancing the catalytic selectivity and activity of Bi
2
O
2
CO
3
/ZnO for electrochemical CO
2
reduction to formate.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-022-2346-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Adsorption ; Carbon dioxide ; Carbon sequestration ; Catalysts ; Cetyltrimethylammonium bromide ; Charge transfer ; Chemical reduction ; Chemistry and Materials Science ; Chemistry/Food Science ; Compressive properties ; Electrocatalysts ; Electron transport ; Electrowinning ; Heterojunctions ; Heterostructures ; Hydrothermal reactions ; Lattice strain ; Magnesium compounds ; Materials Science ; Photoelectrons ; Reaction intermediates ; Spectrum analysis ; Surface chemistry ; Zinc oxide</subject><ispartof>Science China materials, 2023-04, Vol.66 (4), p.1398-1406</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-17107e58362d568022ea2c37dd1950ab507e5eba3c1bdfa0ad829fe632c78f3f3</citedby><cites>FETCH-LOGICAL-c359t-17107e58362d568022ea2c37dd1950ab507e5eba3c1bdfa0ad829fe632c78f3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wei, Xiaoqian</creatorcontrib><creatorcontrib>Li, Zijian</creatorcontrib><creatorcontrib>Jang, Haeseong</creatorcontrib><creatorcontrib>Kim, Min Gyu</creatorcontrib><creatorcontrib>Qin, Qing</creatorcontrib><creatorcontrib>Liu, Xien</creatorcontrib><title>Lattice strain and interfacial engineering of a Bi-based electrocatalyst for highly selective CO2 electroreduction to formate</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Surface strain tuning in a coupled heterostructure efficiently engineers the catalytic performance of heterogeneous catalysts by altering the electronic structures and boosting electron transport. Generally, Bi-based catalysts are more favorable than ZnO for CO
2
electroreduction to formate, but Bi is much more costly than Zn. Herein, a new Bi
2
O
2
CO
3
/ZnO heterojunction catalyst with porous nanoplate morphology is synthesized through a hexadecyl trimethyl ammonium bromide-templated hydrothermal reaction for a highly efficient catalytic CO
2
reduction reaction (CO
2
RR) to produce formate. The Bi
2
O
2
CO
3
/ZnO catalyst shows a maximum Faradaic efficiency of 92% for formate production at −1.0 V vs. reversible hydrogen electrode (RHE) and a large partial current density of −200 mA mg
Bi
−1
at −1.2 V vs. RHE. More importantly, the mass activity of Bi
2
O
2
CO
3
/ZnO normalized by Bi mass is an approximately 3.1-fold enhancement over that of the pristine Bi
2
O
2
CO
3
at −1.2 V vs. RHE. By coupling X-ray photoelectron spectroscopy and adsorption spectroscopy measurements, the charge transfer from the Zn atom to the Bi atom through a heterogeneous interface results in an electron-enriched Bi
2
O
2
CO
3
surface, which facilitates CO
2
capture and activation. Meanwhile, compressive stress produced on the catalyst surface helps optimize the adsorption energy of the reaction intermediate, synergistically enhancing the catalytic selectivity and activity of Bi
2
O
2
CO
3
/ZnO for electrochemical CO
2
reduction to formate.</description><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Catalysts</subject><subject>Cetyltrimethylammonium bromide</subject><subject>Charge transfer</subject><subject>Chemical reduction</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Compressive properties</subject><subject>Electrocatalysts</subject><subject>Electron transport</subject><subject>Electrowinning</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrothermal reactions</subject><subject>Lattice strain</subject><subject>Magnesium compounds</subject><subject>Materials Science</subject><subject>Photoelectrons</subject><subject>Reaction intermediates</subject><subject>Spectrum analysis</subject><subject>Surface chemistry</subject><subject>Zinc oxide</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UDtPwzAQjhBIVNAfwGaJ2eBHnMQjVLykSl1gti7OuXWVJsV2kTrw30kIiInpTvc97u7LsivObjhj5W3MWZVLyoSgQuYFVSfZTHCtaa4YPx16phWthCjOs3mMW8YYLxTnuppln0tIyVskMQXwHYGuIb5LGBxYDy3Bbu07xOC7NekdAXLvaQ0RG4It2hR6CwnaY0zE9YFs_HrTHkn8xvwHksVK_BIDNodh2Hck9SN5BwkvszMHbcT5T73I3h4fXhfPdLl6elncLamVSifKS85KVJUsRKOKavgTQVhZNg3XikGtRhRrkJbXjQMGTSW0w0IKW1ZOOnmRXU---9C_HzAms-0PoRtWGlFqpQSXXA8sPrFs6GMM6Mw--B2Eo-HMjEGbKWgzHGDGoI0aNGLSxP2YEYY_5_9FXynqggQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Wei, Xiaoqian</creator><creator>Li, Zijian</creator><creator>Jang, Haeseong</creator><creator>Kim, Min Gyu</creator><creator>Qin, Qing</creator><creator>Liu, Xien</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Lattice strain and interfacial engineering of a Bi-based electrocatalyst for highly selective CO2 electroreduction to formate</title><author>Wei, Xiaoqian ; Li, Zijian ; Jang, Haeseong ; Kim, Min Gyu ; Qin, Qing ; Liu, Xien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-17107e58362d568022ea2c37dd1950ab507e5eba3c1bdfa0ad829fe632c78f3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Catalysts</topic><topic>Cetyltrimethylammonium bromide</topic><topic>Charge transfer</topic><topic>Chemical reduction</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Compressive properties</topic><topic>Electrocatalysts</topic><topic>Electron transport</topic><topic>Electrowinning</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrothermal reactions</topic><topic>Lattice strain</topic><topic>Magnesium compounds</topic><topic>Materials Science</topic><topic>Photoelectrons</topic><topic>Reaction intermediates</topic><topic>Spectrum analysis</topic><topic>Surface chemistry</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xiaoqian</creatorcontrib><creatorcontrib>Li, Zijian</creatorcontrib><creatorcontrib>Jang, Haeseong</creatorcontrib><creatorcontrib>Kim, Min Gyu</creatorcontrib><creatorcontrib>Qin, Qing</creatorcontrib><creatorcontrib>Liu, Xien</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xiaoqian</au><au>Li, Zijian</au><au>Jang, Haeseong</au><au>Kim, Min Gyu</au><au>Qin, Qing</au><au>Liu, Xien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice strain and interfacial engineering of a Bi-based electrocatalyst for highly selective CO2 electroreduction to formate</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>66</volume><issue>4</issue><spage>1398</spage><epage>1406</epage><pages>1398-1406</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Surface strain tuning in a coupled heterostructure efficiently engineers the catalytic performance of heterogeneous catalysts by altering the electronic structures and boosting electron transport. Generally, Bi-based catalysts are more favorable than ZnO for CO
2
electroreduction to formate, but Bi is much more costly than Zn. Herein, a new Bi
2
O
2
CO
3
/ZnO heterojunction catalyst with porous nanoplate morphology is synthesized through a hexadecyl trimethyl ammonium bromide-templated hydrothermal reaction for a highly efficient catalytic CO
2
reduction reaction (CO
2
RR) to produce formate. The Bi
2
O
2
CO
3
/ZnO catalyst shows a maximum Faradaic efficiency of 92% for formate production at −1.0 V vs. reversible hydrogen electrode (RHE) and a large partial current density of −200 mA mg
Bi
−1
at −1.2 V vs. RHE. More importantly, the mass activity of Bi
2
O
2
CO
3
/ZnO normalized by Bi mass is an approximately 3.1-fold enhancement over that of the pristine Bi
2
O
2
CO
3
at −1.2 V vs. RHE. By coupling X-ray photoelectron spectroscopy and adsorption spectroscopy measurements, the charge transfer from the Zn atom to the Bi atom through a heterogeneous interface results in an electron-enriched Bi
2
O
2
CO
3
surface, which facilitates CO
2
capture and activation. Meanwhile, compressive stress produced on the catalyst surface helps optimize the adsorption energy of the reaction intermediate, synergistically enhancing the catalytic selectivity and activity of Bi
2
O
2
CO
3
/ZnO for electrochemical CO
2
reduction to formate.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-022-2346-5</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-8226 |
ispartof | Science China materials, 2023-04, Vol.66 (4), p.1398-1406 |
issn | 2095-8226 2199-4501 |
language | eng |
recordid | cdi_proquest_journals_2795521319 |
source | Springer Nature |
subjects | Adsorption Carbon dioxide Carbon sequestration Catalysts Cetyltrimethylammonium bromide Charge transfer Chemical reduction Chemistry and Materials Science Chemistry/Food Science Compressive properties Electrocatalysts Electron transport Electrowinning Heterojunctions Heterostructures Hydrothermal reactions Lattice strain Magnesium compounds Materials Science Photoelectrons Reaction intermediates Spectrum analysis Surface chemistry Zinc oxide |
title | Lattice strain and interfacial engineering of a Bi-based electrocatalyst for highly selective CO2 electroreduction to formate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20strain%20and%20interfacial%20engineering%20of%20a%20Bi-based%20electrocatalyst%20for%20highly%20selective%20CO2%20electroreduction%20to%20formate&rft.jtitle=Science%20China%20materials&rft.au=Wei,%20Xiaoqian&rft.date=2023-04-01&rft.volume=66&rft.issue=4&rft.spage=1398&rft.epage=1406&rft.pages=1398-1406&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-022-2346-5&rft_dat=%3Cproquest_cross%3E2795521319%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-17107e58362d568022ea2c37dd1950ab507e5eba3c1bdfa0ad829fe632c78f3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2795521319&rft_id=info:pmid/&rfr_iscdi=true |