Loading…

Thermal treatment of electrospun polystyrene fibers: microstructural evolution and mechanical behavior

The effects of thermal treatment on the microstructure and mechanical properties of electrospun polystyrene (PS) fibers were investigated. Two types of thermal treatments were performed: (1) slow cooling from 80 °C to room temperature, (2) constant-temperature annealing at 110 °C for 10–120 min. SEM...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2023-04, Vol.58 (13), p.6009-6024
Main Authors: Lombard, Juan Diego Shiraishi, Liu, Tianyu, Liu, Guoliang, Tallon, Carolina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-7fe137b513fc8d4234a05c321566ba41dea82f7b5627771cfb79c44504e133973
cites cdi_FETCH-LOGICAL-c392t-7fe137b513fc8d4234a05c321566ba41dea82f7b5627771cfb79c44504e133973
container_end_page 6024
container_issue 13
container_start_page 6009
container_title Journal of materials science
container_volume 58
creator Lombard, Juan Diego Shiraishi
Liu, Tianyu
Liu, Guoliang
Tallon, Carolina
description The effects of thermal treatment on the microstructure and mechanical properties of electrospun polystyrene (PS) fibers were investigated. Two types of thermal treatments were performed: (1) slow cooling from 80 °C to room temperature, (2) constant-temperature annealing at 110 °C for 10–120 min. SEM images showed that the internal porosity of the fibers decreases with a decreasing cooling rate and with an increasing annealing time. The severity of fusion of the fiber mats during cutting decreased with a decreasing cooling rate and was eliminated by constant-temperature annealing at 110 °C for 10 min. N 2 -physisorption did not show any relationship between the cooling rate and porosity of the fibers, but it was found that the volumes of micro- and mesopores in the fibers decreased with an increasing annealing time. Uniaxial tensile testing showed a degradation in mechanical properties at a cooling rate of 0.1 °C s −1 with a recovery in strength and ductility, but further degradation of stiffness at 0.03 °C s −1 . Similar degradation of mechanical properties was found after annealing at 110 °C for 10 min, followed by a recovery of strength, stiffness, and ductility at 60 min. This work demonstrates that annealing PS fibers is a viable method to decrease the porosity and eliminate any potential fusion of electrospun PS fiber mats so they can be used in other manufacturing processes, such as ceramic processing. Graphical Abstract
doi_str_mv 10.1007/s10853-023-08339-0
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2795866659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744482631</galeid><sourcerecordid>A744482631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-7fe137b513fc8d4234a05c321566ba41dea82f7b5627771cfb79c44504e133973</originalsourceid><addsrcrecordid>eNp9kctKxDAUhoMoOF5ewFXBlYuOuTatOxFvIAg6rkOaOZmptMmYpOK8vdEK4kZCCOR838nlR-iE4DnBWJ5HgmvBSkzzrBlrSryDZkRIVvIas100w5jSkvKK7KODGF8xxkJSMkN2sYYw6L5IAXQawKXC2wJ6MCn4uBldsfH9NqZtAAeF7VoI8aIYOpOrKYwmjSHL8O77MXXeFdotiwHMWrvO5EILa_3e-XCE9qzuIxz_rIfo5eZ6cXVXPjze3l9dPpSGNTSV0gJhshWEWVMvOWVcY2EYJaKqWs3JEnRNbQYqKqUkxrayMZwLzLPHGskO0enUdxP82wgxqVc_BpePVFQ2oq6qSjSZmk_USvegOmd9CtrksYT8Mu_Adnn_UnLOa1oxkoWzP0JmEnyklR5jVPfPT39ZOrFfXxQDWLUJ3aDDVhGsvsJSU1gqh6W-w1I4S2ySYobdCsLvvf-xPgFRvJed</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795866659</pqid></control><display><type>article</type><title>Thermal treatment of electrospun polystyrene fibers: microstructural evolution and mechanical behavior</title><source>Springer Nature</source><creator>Lombard, Juan Diego Shiraishi ; Liu, Tianyu ; Liu, Guoliang ; Tallon, Carolina</creator><creatorcontrib>Lombard, Juan Diego Shiraishi ; Liu, Tianyu ; Liu, Guoliang ; Tallon, Carolina</creatorcontrib><description>The effects of thermal treatment on the microstructure and mechanical properties of electrospun polystyrene (PS) fibers were investigated. Two types of thermal treatments were performed: (1) slow cooling from 80 °C to room temperature, (2) constant-temperature annealing at 110 °C for 10–120 min. SEM images showed that the internal porosity of the fibers decreases with a decreasing cooling rate and with an increasing annealing time. The severity of fusion of the fiber mats during cutting decreased with a decreasing cooling rate and was eliminated by constant-temperature annealing at 110 °C for 10 min. N 2 -physisorption did not show any relationship between the cooling rate and porosity of the fibers, but it was found that the volumes of micro- and mesopores in the fibers decreased with an increasing annealing time. Uniaxial tensile testing showed a degradation in mechanical properties at a cooling rate of 0.1 °C s −1 with a recovery in strength and ductility, but further degradation of stiffness at 0.03 °C s −1 . Similar degradation of mechanical properties was found after annealing at 110 °C for 10 min, followed by a recovery of strength, stiffness, and ductility at 60 min. This work demonstrates that annealing PS fibers is a viable method to decrease the porosity and eliminate any potential fusion of electrospun PS fiber mats so they can be used in other manufacturing processes, such as ceramic processing. Graphical Abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-08339-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annealing ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cooling rate ; Crystallography and Scattering Methods ; Degradation ; Ductility ; Heat treatment ; Materials Science ; Mechanical properties ; Microstructure ; Polymer Sciences ; Polymers &amp; Biopolymers ; Polystyrene ; Polystyrene fibers ; Polystyrene resins ; Porosity ; Recovery ; Room temperature ; Solid Mechanics ; Stiffness ; Tensile tests</subject><ispartof>Journal of materials science, 2023-04, Vol.58 (13), p.6009-6024</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-7fe137b513fc8d4234a05c321566ba41dea82f7b5627771cfb79c44504e133973</citedby><cites>FETCH-LOGICAL-c392t-7fe137b513fc8d4234a05c321566ba41dea82f7b5627771cfb79c44504e133973</cites><orcidid>0000-0001-7361-7149 ; 0000-0002-1859-6522 ; 0000-0002-6778-0625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Lombard, Juan Diego Shiraishi</creatorcontrib><creatorcontrib>Liu, Tianyu</creatorcontrib><creatorcontrib>Liu, Guoliang</creatorcontrib><creatorcontrib>Tallon, Carolina</creatorcontrib><title>Thermal treatment of electrospun polystyrene fibers: microstructural evolution and mechanical behavior</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The effects of thermal treatment on the microstructure and mechanical properties of electrospun polystyrene (PS) fibers were investigated. Two types of thermal treatments were performed: (1) slow cooling from 80 °C to room temperature, (2) constant-temperature annealing at 110 °C for 10–120 min. SEM images showed that the internal porosity of the fibers decreases with a decreasing cooling rate and with an increasing annealing time. The severity of fusion of the fiber mats during cutting decreased with a decreasing cooling rate and was eliminated by constant-temperature annealing at 110 °C for 10 min. N 2 -physisorption did not show any relationship between the cooling rate and porosity of the fibers, but it was found that the volumes of micro- and mesopores in the fibers decreased with an increasing annealing time. Uniaxial tensile testing showed a degradation in mechanical properties at a cooling rate of 0.1 °C s −1 with a recovery in strength and ductility, but further degradation of stiffness at 0.03 °C s −1 . Similar degradation of mechanical properties was found after annealing at 110 °C for 10 min, followed by a recovery of strength, stiffness, and ductility at 60 min. This work demonstrates that annealing PS fibers is a viable method to decrease the porosity and eliminate any potential fusion of electrospun PS fiber mats so they can be used in other manufacturing processes, such as ceramic processing. Graphical Abstract</description><subject>Annealing</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cooling rate</subject><subject>Crystallography and Scattering Methods</subject><subject>Degradation</subject><subject>Ductility</subject><subject>Heat treatment</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Polymer Sciences</subject><subject>Polymers &amp; Biopolymers</subject><subject>Polystyrene</subject><subject>Polystyrene fibers</subject><subject>Polystyrene resins</subject><subject>Porosity</subject><subject>Recovery</subject><subject>Room temperature</subject><subject>Solid Mechanics</subject><subject>Stiffness</subject><subject>Tensile tests</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctKxDAUhoMoOF5ewFXBlYuOuTatOxFvIAg6rkOaOZmptMmYpOK8vdEK4kZCCOR838nlR-iE4DnBWJ5HgmvBSkzzrBlrSryDZkRIVvIas100w5jSkvKK7KODGF8xxkJSMkN2sYYw6L5IAXQawKXC2wJ6MCn4uBldsfH9NqZtAAeF7VoI8aIYOpOrKYwmjSHL8O77MXXeFdotiwHMWrvO5EILa_3e-XCE9qzuIxz_rIfo5eZ6cXVXPjze3l9dPpSGNTSV0gJhshWEWVMvOWVcY2EYJaKqWs3JEnRNbQYqKqUkxrayMZwLzLPHGskO0enUdxP82wgxqVc_BpePVFQ2oq6qSjSZmk_USvegOmd9CtrksYT8Mu_Adnn_UnLOa1oxkoWzP0JmEnyklR5jVPfPT39ZOrFfXxQDWLUJ3aDDVhGsvsJSU1gqh6W-w1I4S2ySYobdCsLvvf-xPgFRvJed</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Lombard, Juan Diego Shiraishi</creator><creator>Liu, Tianyu</creator><creator>Liu, Guoliang</creator><creator>Tallon, Carolina</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7361-7149</orcidid><orcidid>https://orcid.org/0000-0002-1859-6522</orcidid><orcidid>https://orcid.org/0000-0002-6778-0625</orcidid></search><sort><creationdate>20230401</creationdate><title>Thermal treatment of electrospun polystyrene fibers: microstructural evolution and mechanical behavior</title><author>Lombard, Juan Diego Shiraishi ; Liu, Tianyu ; Liu, Guoliang ; Tallon, Carolina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-7fe137b513fc8d4234a05c321566ba41dea82f7b5627771cfb79c44504e133973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annealing</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cooling rate</topic><topic>Crystallography and Scattering Methods</topic><topic>Degradation</topic><topic>Ductility</topic><topic>Heat treatment</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Polymer Sciences</topic><topic>Polymers &amp; Biopolymers</topic><topic>Polystyrene</topic><topic>Polystyrene fibers</topic><topic>Polystyrene resins</topic><topic>Porosity</topic><topic>Recovery</topic><topic>Room temperature</topic><topic>Solid Mechanics</topic><topic>Stiffness</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lombard, Juan Diego Shiraishi</creatorcontrib><creatorcontrib>Liu, Tianyu</creatorcontrib><creatorcontrib>Liu, Guoliang</creatorcontrib><creatorcontrib>Tallon, Carolina</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lombard, Juan Diego Shiraishi</au><au>Liu, Tianyu</au><au>Liu, Guoliang</au><au>Tallon, Carolina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal treatment of electrospun polystyrene fibers: microstructural evolution and mechanical behavior</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>58</volume><issue>13</issue><spage>6009</spage><epage>6024</epage><pages>6009-6024</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The effects of thermal treatment on the microstructure and mechanical properties of electrospun polystyrene (PS) fibers were investigated. Two types of thermal treatments were performed: (1) slow cooling from 80 °C to room temperature, (2) constant-temperature annealing at 110 °C for 10–120 min. SEM images showed that the internal porosity of the fibers decreases with a decreasing cooling rate and with an increasing annealing time. The severity of fusion of the fiber mats during cutting decreased with a decreasing cooling rate and was eliminated by constant-temperature annealing at 110 °C for 10 min. N 2 -physisorption did not show any relationship between the cooling rate and porosity of the fibers, but it was found that the volumes of micro- and mesopores in the fibers decreased with an increasing annealing time. Uniaxial tensile testing showed a degradation in mechanical properties at a cooling rate of 0.1 °C s −1 with a recovery in strength and ductility, but further degradation of stiffness at 0.03 °C s −1 . Similar degradation of mechanical properties was found after annealing at 110 °C for 10 min, followed by a recovery of strength, stiffness, and ductility at 60 min. This work demonstrates that annealing PS fibers is a viable method to decrease the porosity and eliminate any potential fusion of electrospun PS fiber mats so they can be used in other manufacturing processes, such as ceramic processing. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-08339-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7361-7149</orcidid><orcidid>https://orcid.org/0000-0002-1859-6522</orcidid><orcidid>https://orcid.org/0000-0002-6778-0625</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2023-04, Vol.58 (13), p.6009-6024
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2795866659
source Springer Nature
subjects Annealing
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Cooling rate
Crystallography and Scattering Methods
Degradation
Ductility
Heat treatment
Materials Science
Mechanical properties
Microstructure
Polymer Sciences
Polymers & Biopolymers
Polystyrene
Polystyrene fibers
Polystyrene resins
Porosity
Recovery
Room temperature
Solid Mechanics
Stiffness
Tensile tests
title Thermal treatment of electrospun polystyrene fibers: microstructural evolution and mechanical behavior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20treatment%20of%20electrospun%20polystyrene%20fibers:%20microstructural%20evolution%20and%20mechanical%20behavior&rft.jtitle=Journal%20of%20materials%20science&rft.au=Lombard,%20Juan%20Diego%20Shiraishi&rft.date=2023-04-01&rft.volume=58&rft.issue=13&rft.spage=6009&rft.epage=6024&rft.pages=6009-6024&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-08339-0&rft_dat=%3Cgale_proqu%3EA744482631%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-7fe137b513fc8d4234a05c321566ba41dea82f7b5627771cfb79c44504e133973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2795866659&rft_id=info:pmid/&rft_galeid=A744482631&rfr_iscdi=true