Loading…
De-novo Identification of Small Molecules from Their GC-EI-MS Spectra
Identification of experimentally acquired mass spectra of unknown compounds presents a~particular challenge because reliable spectral databases do not cover the potential chemical space with sufficient density. Therefore machine learning based \emph{de-novo} methods, which derive molecular structure...
Saved in:
Published in: | arXiv.org 2023-04 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Identification of experimentally acquired mass spectra of unknown compounds presents a~particular challenge because reliable spectral databases do not cover the potential chemical space with sufficient density. Therefore machine learning based \emph{de-novo} methods, which derive molecular structure directly from its mass spectrum gained attention recently. We present a~novel method in this family, addressing a~specific usecase of GC-EI-MS spectra, which is particularly hard due to lack of additional information from the first stage of MS/MS experiments, on which the previously published methods rely. We analyze strengths and drawbacks or our approach and discuss future directions. |
---|---|
ISSN: | 2331-8422 |