Loading…

Elucidating the Mechanism of Large Phosphate Molecule Intercalation Through Graphene Heterointerfaces

Intercalation is a process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on intercalating metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remai...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-04
Main Authors: Liang, Jiayun, Ma, Ke, Zhao, Xiao, Lu, Guanyu, Riffle, Jake V, Andrei, Carmen, Dong, Chengye, Turker Furkan, Rajabpour, Siavash, Rajiv Ramanujam Prabhakar, Robinson, Joshua A, Vasquez, Magdaleno R, Trinh, Quang Thang, Ager, Joel W, Salmeron, Miquel, Aloni, Shaul, Caldwell, Joshua D, Hollen, Shawna M, Bechtel, Hans A, Bassim, Nabil, Sherburne, Matthew P, Al Balushi, Zakaria Y
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liang, Jiayun
Ma, Ke
Zhao, Xiao
Lu, Guanyu
Riffle, Jake V
Andrei, Carmen
Dong, Chengye
Turker Furkan
Rajabpour, Siavash
Rajiv Ramanujam Prabhakar
Robinson, Joshua A
Vasquez, Magdaleno R
Trinh, Quang Thang
Ager, Joel W
Salmeron, Miquel
Aloni, Shaul
Caldwell, Joshua D
Hollen, Shawna M
Bechtel, Hans A
Bassim, Nabil
Sherburne, Matthew P
Al Balushi, Zakaria Y
description Intercalation is a process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on intercalating metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains highly unexplored. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene heterointerface using various techniques. Density functional theory (DFT) corroborate the experimental results and reveal the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from pre-dissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This study is a significant milestone in advancing our understanding of intercalation routes of large molecules via the basal plane of graphene, as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2795867695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795867695</sourcerecordid><originalsourceid>FETCH-proquest_journals_27958676953</originalsourceid><addsrcrecordid>eNqNy0sKwjAUheEgCBbtHi44LtTU9DGWagUFB52XEG-blpjUPPZvBRfg6Ay-_6xIRLPskJRHSjckdm5K05TmBWUsiwjWKojxyf2oB_AS4Y5Ccj26F5gebtwOCA9p3Cy5X9AoFEEhXLVHK7hafkZDK60Jg4SL5bNEjdDgwmb8Rj0X6HZk3XPlMP7tluzPdXtqktmad0Dnu8kEqxfqaFGxMi_yimX_VR-gwUdu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795867695</pqid></control><display><type>article</type><title>Elucidating the Mechanism of Large Phosphate Molecule Intercalation Through Graphene Heterointerfaces</title><source>Publicly Available Content Database</source><creator>Liang, Jiayun ; Ma, Ke ; Zhao, Xiao ; Lu, Guanyu ; Riffle, Jake V ; Andrei, Carmen ; Dong, Chengye ; Turker Furkan ; Rajabpour, Siavash ; Rajiv Ramanujam Prabhakar ; Robinson, Joshua A ; Vasquez, Magdaleno R ; Trinh, Quang Thang ; Ager, Joel W ; Salmeron, Miquel ; Aloni, Shaul ; Caldwell, Joshua D ; Hollen, Shawna M ; Bechtel, Hans A ; Bassim, Nabil ; Sherburne, Matthew P ; Al Balushi, Zakaria Y</creator><creatorcontrib>Liang, Jiayun ; Ma, Ke ; Zhao, Xiao ; Lu, Guanyu ; Riffle, Jake V ; Andrei, Carmen ; Dong, Chengye ; Turker Furkan ; Rajabpour, Siavash ; Rajiv Ramanujam Prabhakar ; Robinson, Joshua A ; Vasquez, Magdaleno R ; Trinh, Quang Thang ; Ager, Joel W ; Salmeron, Miquel ; Aloni, Shaul ; Caldwell, Joshua D ; Hollen, Shawna M ; Bechtel, Hans A ; Bassim, Nabil ; Sherburne, Matthew P ; Al Balushi, Zakaria Y</creatorcontrib><description>Intercalation is a process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on intercalating metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains highly unexplored. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene heterointerface using various techniques. Density functional theory (DFT) corroborate the experimental results and reveal the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from pre-dissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This study is a significant milestone in advancing our understanding of intercalation routes of large molecules via the basal plane of graphene, as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Basal plane ; Chemical reactions ; Crystal defects ; Density functional theory ; Graphene ; Intercalation ; Layered materials ; Phosphates ; Phosphorus pentoxide ; Substrates ; Vapor phases</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2795867695?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Liang, Jiayun</creatorcontrib><creatorcontrib>Ma, Ke</creatorcontrib><creatorcontrib>Zhao, Xiao</creatorcontrib><creatorcontrib>Lu, Guanyu</creatorcontrib><creatorcontrib>Riffle, Jake V</creatorcontrib><creatorcontrib>Andrei, Carmen</creatorcontrib><creatorcontrib>Dong, Chengye</creatorcontrib><creatorcontrib>Turker Furkan</creatorcontrib><creatorcontrib>Rajabpour, Siavash</creatorcontrib><creatorcontrib>Rajiv Ramanujam Prabhakar</creatorcontrib><creatorcontrib>Robinson, Joshua A</creatorcontrib><creatorcontrib>Vasquez, Magdaleno R</creatorcontrib><creatorcontrib>Trinh, Quang Thang</creatorcontrib><creatorcontrib>Ager, Joel W</creatorcontrib><creatorcontrib>Salmeron, Miquel</creatorcontrib><creatorcontrib>Aloni, Shaul</creatorcontrib><creatorcontrib>Caldwell, Joshua D</creatorcontrib><creatorcontrib>Hollen, Shawna M</creatorcontrib><creatorcontrib>Bechtel, Hans A</creatorcontrib><creatorcontrib>Bassim, Nabil</creatorcontrib><creatorcontrib>Sherburne, Matthew P</creatorcontrib><creatorcontrib>Al Balushi, Zakaria Y</creatorcontrib><title>Elucidating the Mechanism of Large Phosphate Molecule Intercalation Through Graphene Heterointerfaces</title><title>arXiv.org</title><description>Intercalation is a process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on intercalating metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains highly unexplored. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene heterointerface using various techniques. Density functional theory (DFT) corroborate the experimental results and reveal the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from pre-dissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This study is a significant milestone in advancing our understanding of intercalation routes of large molecules via the basal plane of graphene, as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.</description><subject>Basal plane</subject><subject>Chemical reactions</subject><subject>Crystal defects</subject><subject>Density functional theory</subject><subject>Graphene</subject><subject>Intercalation</subject><subject>Layered materials</subject><subject>Phosphates</subject><subject>Phosphorus pentoxide</subject><subject>Substrates</subject><subject>Vapor phases</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy0sKwjAUheEgCBbtHi44LtTU9DGWagUFB52XEG-blpjUPPZvBRfg6Ay-_6xIRLPskJRHSjckdm5K05TmBWUsiwjWKojxyf2oB_AS4Y5Ccj26F5gebtwOCA9p3Cy5X9AoFEEhXLVHK7hafkZDK60Jg4SL5bNEjdDgwmb8Rj0X6HZk3XPlMP7tluzPdXtqktmad0Dnu8kEqxfqaFGxMi_yimX_VR-gwUdu</recordid><startdate>20230404</startdate><enddate>20230404</enddate><creator>Liang, Jiayun</creator><creator>Ma, Ke</creator><creator>Zhao, Xiao</creator><creator>Lu, Guanyu</creator><creator>Riffle, Jake V</creator><creator>Andrei, Carmen</creator><creator>Dong, Chengye</creator><creator>Turker Furkan</creator><creator>Rajabpour, Siavash</creator><creator>Rajiv Ramanujam Prabhakar</creator><creator>Robinson, Joshua A</creator><creator>Vasquez, Magdaleno R</creator><creator>Trinh, Quang Thang</creator><creator>Ager, Joel W</creator><creator>Salmeron, Miquel</creator><creator>Aloni, Shaul</creator><creator>Caldwell, Joshua D</creator><creator>Hollen, Shawna M</creator><creator>Bechtel, Hans A</creator><creator>Bassim, Nabil</creator><creator>Sherburne, Matthew P</creator><creator>Al Balushi, Zakaria Y</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230404</creationdate><title>Elucidating the Mechanism of Large Phosphate Molecule Intercalation Through Graphene Heterointerfaces</title><author>Liang, Jiayun ; Ma, Ke ; Zhao, Xiao ; Lu, Guanyu ; Riffle, Jake V ; Andrei, Carmen ; Dong, Chengye ; Turker Furkan ; Rajabpour, Siavash ; Rajiv Ramanujam Prabhakar ; Robinson, Joshua A ; Vasquez, Magdaleno R ; Trinh, Quang Thang ; Ager, Joel W ; Salmeron, Miquel ; Aloni, Shaul ; Caldwell, Joshua D ; Hollen, Shawna M ; Bechtel, Hans A ; Bassim, Nabil ; Sherburne, Matthew P ; Al Balushi, Zakaria Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27958676953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Basal plane</topic><topic>Chemical reactions</topic><topic>Crystal defects</topic><topic>Density functional theory</topic><topic>Graphene</topic><topic>Intercalation</topic><topic>Layered materials</topic><topic>Phosphates</topic><topic>Phosphorus pentoxide</topic><topic>Substrates</topic><topic>Vapor phases</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Jiayun</creatorcontrib><creatorcontrib>Ma, Ke</creatorcontrib><creatorcontrib>Zhao, Xiao</creatorcontrib><creatorcontrib>Lu, Guanyu</creatorcontrib><creatorcontrib>Riffle, Jake V</creatorcontrib><creatorcontrib>Andrei, Carmen</creatorcontrib><creatorcontrib>Dong, Chengye</creatorcontrib><creatorcontrib>Turker Furkan</creatorcontrib><creatorcontrib>Rajabpour, Siavash</creatorcontrib><creatorcontrib>Rajiv Ramanujam Prabhakar</creatorcontrib><creatorcontrib>Robinson, Joshua A</creatorcontrib><creatorcontrib>Vasquez, Magdaleno R</creatorcontrib><creatorcontrib>Trinh, Quang Thang</creatorcontrib><creatorcontrib>Ager, Joel W</creatorcontrib><creatorcontrib>Salmeron, Miquel</creatorcontrib><creatorcontrib>Aloni, Shaul</creatorcontrib><creatorcontrib>Caldwell, Joshua D</creatorcontrib><creatorcontrib>Hollen, Shawna M</creatorcontrib><creatorcontrib>Bechtel, Hans A</creatorcontrib><creatorcontrib>Bassim, Nabil</creatorcontrib><creatorcontrib>Sherburne, Matthew P</creatorcontrib><creatorcontrib>Al Balushi, Zakaria Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Jiayun</au><au>Ma, Ke</au><au>Zhao, Xiao</au><au>Lu, Guanyu</au><au>Riffle, Jake V</au><au>Andrei, Carmen</au><au>Dong, Chengye</au><au>Turker Furkan</au><au>Rajabpour, Siavash</au><au>Rajiv Ramanujam Prabhakar</au><au>Robinson, Joshua A</au><au>Vasquez, Magdaleno R</au><au>Trinh, Quang Thang</au><au>Ager, Joel W</au><au>Salmeron, Miquel</au><au>Aloni, Shaul</au><au>Caldwell, Joshua D</au><au>Hollen, Shawna M</au><au>Bechtel, Hans A</au><au>Bassim, Nabil</au><au>Sherburne, Matthew P</au><au>Al Balushi, Zakaria Y</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Elucidating the Mechanism of Large Phosphate Molecule Intercalation Through Graphene Heterointerfaces</atitle><jtitle>arXiv.org</jtitle><date>2023-04-04</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Intercalation is a process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on intercalating metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains highly unexplored. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene heterointerface using various techniques. Density functional theory (DFT) corroborate the experimental results and reveal the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from pre-dissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This study is a significant milestone in advancing our understanding of intercalation routes of large molecules via the basal plane of graphene, as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2795867695
source Publicly Available Content Database
subjects Basal plane
Chemical reactions
Crystal defects
Density functional theory
Graphene
Intercalation
Layered materials
Phosphates
Phosphorus pentoxide
Substrates
Vapor phases
title Elucidating the Mechanism of Large Phosphate Molecule Intercalation Through Graphene Heterointerfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Elucidating%20the%20Mechanism%20of%20Large%20Phosphate%20Molecule%20Intercalation%20Through%20Graphene%20Heterointerfaces&rft.jtitle=arXiv.org&rft.au=Liang,%20Jiayun&rft.date=2023-04-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2795867695%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27958676953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2795867695&rft_id=info:pmid/&rfr_iscdi=true