Loading…

Theoretical Exploration of Cluster Nanoarchitectonics: Effects of Doping a Ge13 Cluster with Ta, Fe, Pd, and Co through DFT

This article primarily explores the electronic properties and geometrical structures of a Ge 13 cluster with single-atom doped X (Ta, Fe, Pd and Co) based on density functional theory (DFT). The spin-polarized exchange correlation functional was used to analyze the isomers of doped Ge 12 X clusters...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2023-05, Vol.52 (5), p.3018-3028
Main Authors: Arunachalam, B., Manavalan, R., Gopalakrishnan, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-18aec8c45f4e1b87af89ec0364a1165c4dd7395a79fe35e3bba6d0e300f455b83
container_end_page 3028
container_issue 5
container_start_page 3018
container_title Journal of electronic materials
container_volume 52
creator Arunachalam, B.
Manavalan, R.
Gopalakrishnan, N.
description This article primarily explores the electronic properties and geometrical structures of a Ge 13 cluster with single-atom doped X (Ta, Fe, Pd and Co) based on density functional theory (DFT). The spin-polarized exchange correlation functional was used to analyze the isomers of doped Ge 12 X clusters generally to classify the stable structures. This work explores the diverse doping positions and magnetic parameters on each isomer. The analysis indicates that the Ta, Fe, Pd and Co doped Ge 12 X with cuboctahedral and decahedral structures have the lowest energy structures, whereas Ge 13 mainly favors a cuboctahedral structure. The different doping atom positions contribute to strengthening the stability of the Ge 12 X cluster structures. Moreover, the Bader charge analysis of doped Ge 1 2 X reveals −0.3e accumulated for the dopant Ta as an electron donor in the cluster while other dopants tend to accept the electrons and the HOMO–LUMO gap is notably reduced. Density of states (DOS) analysis indicates that doped Ge 12 X is semimetallic and is capable of holding magnetism. In general, this work summarizes the relevance of inserting the doped atom at a strategic position on the Ge 11 X 2 cluster in finding the stable structure.
doi_str_mv 10.1007/s11664-023-10269-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2795897260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795897260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-18aec8c45f4e1b87af89ec0364a1165c4dd7395a79fe35e3bba6d0e300f455b83</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcBt1NNmqYPdzIvhUFdjOAupOnNtENtapJBxT9vxoruXF0OnO9czkHonJJLSkh25ShN0yQiMYsoidMiogdoRHkSZJ4-H6IRYSmNeMz4MTpxbksI5TSnI_S5rsFY8I2SLZ6_962x0jemw0bjabtzHiy-l52RVtWNB-VN1yh3jedaB-H2tpnpm26DJV4CZb_QW-NrvJYTvIAJfqwmWHYVnhrsa2t2mxrPFutTdKRl6-Ds547R02K-nt5Gq4fl3fRmFak4Iz40kKBylXCdAC3zTOq8ABUKJTK05iqpqowVXGaFBsaBlaVMKwKMEJ1wXuZsjC6G3N6a1x04L7ZmZ7vwUsRZwfMii1MSXPHgUtY4Z0GL3jYv0n4ISsR-ZDGMLMLI4ntkQQPEBsgFc7cB-xf9D_UFnwt-lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795897260</pqid></control><display><type>article</type><title>Theoretical Exploration of Cluster Nanoarchitectonics: Effects of Doping a Ge13 Cluster with Ta, Fe, Pd, and Co through DFT</title><source>Springer Nature</source><creator>Arunachalam, B. ; Manavalan, R. ; Gopalakrishnan, N.</creator><creatorcontrib>Arunachalam, B. ; Manavalan, R. ; Gopalakrishnan, N.</creatorcontrib><description>This article primarily explores the electronic properties and geometrical structures of a Ge 13 cluster with single-atom doped X (Ta, Fe, Pd and Co) based on density functional theory (DFT). The spin-polarized exchange correlation functional was used to analyze the isomers of doped Ge 12 X clusters generally to classify the stable structures. This work explores the diverse doping positions and magnetic parameters on each isomer. The analysis indicates that the Ta, Fe, Pd and Co doped Ge 12 X with cuboctahedral and decahedral structures have the lowest energy structures, whereas Ge 13 mainly favors a cuboctahedral structure. The different doping atom positions contribute to strengthening the stability of the Ge 12 X cluster structures. Moreover, the Bader charge analysis of doped Ge 1 2 X reveals −0.3e accumulated for the dopant Ta as an electron donor in the cluster while other dopants tend to accept the electrons and the HOMO–LUMO gap is notably reduced. Density of states (DOS) analysis indicates that doped Ge 12 X is semimetallic and is capable of holding magnetism. In general, this work summarizes the relevance of inserting the doped atom at a strategic position on the Ge 11 X 2 cluster in finding the stable structure.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10269-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Clusters ; Cobalt ; Density functional theory ; Density of states ; Dopants ; Doping ; Electronics and Microelectronics ; Electrons ; Energy ; Instrumentation ; Iron ; Isomers ; Magnetic properties ; Materials Science ; Molecular orbitals ; Optical and Electronic Materials ; Original Research Article ; Palladium ; Solid State Physics ; Stability analysis</subject><ispartof>Journal of electronic materials, 2023-05, Vol.52 (5), p.3018-3028</ispartof><rights>The Minerals, Metals &amp; Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-18aec8c45f4e1b87af89ec0364a1165c4dd7395a79fe35e3bba6d0e300f455b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Arunachalam, B.</creatorcontrib><creatorcontrib>Manavalan, R.</creatorcontrib><creatorcontrib>Gopalakrishnan, N.</creatorcontrib><title>Theoretical Exploration of Cluster Nanoarchitectonics: Effects of Doping a Ge13 Cluster with Ta, Fe, Pd, and Co through DFT</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>This article primarily explores the electronic properties and geometrical structures of a Ge 13 cluster with single-atom doped X (Ta, Fe, Pd and Co) based on density functional theory (DFT). The spin-polarized exchange correlation functional was used to analyze the isomers of doped Ge 12 X clusters generally to classify the stable structures. This work explores the diverse doping positions and magnetic parameters on each isomer. The analysis indicates that the Ta, Fe, Pd and Co doped Ge 12 X with cuboctahedral and decahedral structures have the lowest energy structures, whereas Ge 13 mainly favors a cuboctahedral structure. The different doping atom positions contribute to strengthening the stability of the Ge 12 X cluster structures. Moreover, the Bader charge analysis of doped Ge 1 2 X reveals −0.3e accumulated for the dopant Ta as an electron donor in the cluster while other dopants tend to accept the electrons and the HOMO–LUMO gap is notably reduced. Density of states (DOS) analysis indicates that doped Ge 12 X is semimetallic and is capable of holding magnetism. In general, this work summarizes the relevance of inserting the doped atom at a strategic position on the Ge 11 X 2 cluster in finding the stable structure.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Clusters</subject><subject>Cobalt</subject><subject>Density functional theory</subject><subject>Density of states</subject><subject>Dopants</subject><subject>Doping</subject><subject>Electronics and Microelectronics</subject><subject>Electrons</subject><subject>Energy</subject><subject>Instrumentation</subject><subject>Iron</subject><subject>Isomers</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Molecular orbitals</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Palladium</subject><subject>Solid State Physics</subject><subject>Stability analysis</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcBt1NNmqYPdzIvhUFdjOAupOnNtENtapJBxT9vxoruXF0OnO9czkHonJJLSkh25ShN0yQiMYsoidMiogdoRHkSZJ4-H6IRYSmNeMz4MTpxbksI5TSnI_S5rsFY8I2SLZ6_962x0jemw0bjabtzHiy-l52RVtWNB-VN1yh3jedaB-H2tpnpm26DJV4CZb_QW-NrvJYTvIAJfqwmWHYVnhrsa2t2mxrPFutTdKRl6-Ds547R02K-nt5Gq4fl3fRmFak4Iz40kKBylXCdAC3zTOq8ABUKJTK05iqpqowVXGaFBsaBlaVMKwKMEJ1wXuZsjC6G3N6a1x04L7ZmZ7vwUsRZwfMii1MSXPHgUtY4Z0GL3jYv0n4ISsR-ZDGMLMLI4ntkQQPEBsgFc7cB-xf9D_UFnwt-lA</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Arunachalam, B.</creator><creator>Manavalan, R.</creator><creator>Gopalakrishnan, N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230501</creationdate><title>Theoretical Exploration of Cluster Nanoarchitectonics: Effects of Doping a Ge13 Cluster with Ta, Fe, Pd, and Co through DFT</title><author>Arunachalam, B. ; Manavalan, R. ; Gopalakrishnan, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-18aec8c45f4e1b87af89ec0364a1165c4dd7395a79fe35e3bba6d0e300f455b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Clusters</topic><topic>Cobalt</topic><topic>Density functional theory</topic><topic>Density of states</topic><topic>Dopants</topic><topic>Doping</topic><topic>Electronics and Microelectronics</topic><topic>Electrons</topic><topic>Energy</topic><topic>Instrumentation</topic><topic>Iron</topic><topic>Isomers</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Molecular orbitals</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Palladium</topic><topic>Solid State Physics</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arunachalam, B.</creatorcontrib><creatorcontrib>Manavalan, R.</creatorcontrib><creatorcontrib>Gopalakrishnan, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arunachalam, B.</au><au>Manavalan, R.</au><au>Gopalakrishnan, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Exploration of Cluster Nanoarchitectonics: Effects of Doping a Ge13 Cluster with Ta, Fe, Pd, and Co through DFT</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>52</volume><issue>5</issue><spage>3018</spage><epage>3028</epage><pages>3018-3028</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>This article primarily explores the electronic properties and geometrical structures of a Ge 13 cluster with single-atom doped X (Ta, Fe, Pd and Co) based on density functional theory (DFT). The spin-polarized exchange correlation functional was used to analyze the isomers of doped Ge 12 X clusters generally to classify the stable structures. This work explores the diverse doping positions and magnetic parameters on each isomer. The analysis indicates that the Ta, Fe, Pd and Co doped Ge 12 X with cuboctahedral and decahedral structures have the lowest energy structures, whereas Ge 13 mainly favors a cuboctahedral structure. The different doping atom positions contribute to strengthening the stability of the Ge 12 X cluster structures. Moreover, the Bader charge analysis of doped Ge 1 2 X reveals −0.3e accumulated for the dopant Ta as an electron donor in the cluster while other dopants tend to accept the electrons and the HOMO–LUMO gap is notably reduced. Density of states (DOS) analysis indicates that doped Ge 12 X is semimetallic and is capable of holding magnetism. In general, this work summarizes the relevance of inserting the doped atom at a strategic position on the Ge 11 X 2 cluster in finding the stable structure.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10269-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2023-05, Vol.52 (5), p.3018-3028
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2795897260
source Springer Nature
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Clusters
Cobalt
Density functional theory
Density of states
Dopants
Doping
Electronics and Microelectronics
Electrons
Energy
Instrumentation
Iron
Isomers
Magnetic properties
Materials Science
Molecular orbitals
Optical and Electronic Materials
Original Research Article
Palladium
Solid State Physics
Stability analysis
title Theoretical Exploration of Cluster Nanoarchitectonics: Effects of Doping a Ge13 Cluster with Ta, Fe, Pd, and Co through DFT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Exploration%20of%20Cluster%20Nanoarchitectonics:%20Effects%20of%20Doping%20a%20Ge13%20Cluster%20with%20Ta,%20Fe,%20Pd,%20and%20Co%20through%20DFT&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Arunachalam,%20B.&rft.date=2023-05-01&rft.volume=52&rft.issue=5&rft.spage=3018&rft.epage=3028&rft.pages=3018-3028&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10269-1&rft_dat=%3Cproquest_cross%3E2795897260%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-18aec8c45f4e1b87af89ec0364a1165c4dd7395a79fe35e3bba6d0e300f455b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2795897260&rft_id=info:pmid/&rfr_iscdi=true