Loading…
The Stochastic Linear Quadratic Optimal Control Problem on Hilbert Spaces: The Case of Non-analytic Systems
We derive the algebraic Riccati equation associated with the infinite dimensional linear quadratic stochastic optimal control problem on an infinite horizon, for stochastic control systems with non-analytic dynamics. The linear system under consideration is modeled by a linear stochastic differentia...
Saved in:
Published in: | Applied mathematics & optimization 2023-06, Vol.87 (3), p.58, Article 58 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-10b377f58249c174014f4c1b4b63a018c7e9fcc1a9c60105a9eb2a9e1cd1cbeb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-10b377f58249c174014f4c1b4b63a018c7e9fcc1a9c60105a9eb2a9e1cd1cbeb3 |
container_end_page | |
container_issue | 3 |
container_start_page | 58 |
container_title | Applied mathematics & optimization |
container_volume | 87 |
creator | Tuffaha, Amjad |
description | We derive the algebraic Riccati equation associated with the infinite dimensional linear quadratic stochastic optimal control problem on an infinite horizon, for stochastic control systems with non-analytic dynamics. The linear system under consideration is modeled by a linear stochastic differential equation with noise in the control, and with a
C
0
-semigroup driving the deterministic component of the dynamics, and unbounded control action satisfying a singular estimate. We derive the feedback relation for the optimal control in terms of the optimal state via an operator solving an Algebraic Riccati equation. We show that the algebraic Riccati equation is well posed and has a unique solution in an appropriate class. These systems are typically coupled systems of stochastic partial differential equations comprising both parabolic and hyperbolic components with point or boundary control. |
doi_str_mv | 10.1007/s00245-023-09969-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2797451027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2797451027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-10b377f58249c174014f4c1b4b63a018c7e9fcc1a9c60105a9eb2a9e1cd1cbeb3</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKdfwFPAc_S9Jm0Wb1LUCcMpm-eQZqmrdk1NusO-va0VvHnJg_D7_3jvT8glwjUCyJsIkIiUQcIZKJUphkdkgoInDDLIjskEQKVMZJidkrMYP6DnecYn5HO9dXTVebs1sassXVSNM4G-7s0mmOFj2XbVztQ0900XfE1fgi9qt6O-ofOqLlzo6Ko11sVbOqhyEx31JX32DTONqQ-DY3WIndvFc3JSmjq6i985JW8P9-t8zhbLx6f8bsEsR9UxhIJLWaazRCiLUgCKUlgsRJFxAziz0qnSWjTKZoCQGuWKpH_QbtAWruBTcjV62-C_9i52-sPvQ79M1IlUUqQIieypZKRs8DEGV-o29JeGg0bQQ6l6LFX3TemfUjX2IT6GYg837y78qf9JfQOIKXod</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797451027</pqid></control><display><type>article</type><title>The Stochastic Linear Quadratic Optimal Control Problem on Hilbert Spaces: The Case of Non-analytic Systems</title><source>Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Tuffaha, Amjad</creator><creatorcontrib>Tuffaha, Amjad</creatorcontrib><description>We derive the algebraic Riccati equation associated with the infinite dimensional linear quadratic stochastic optimal control problem on an infinite horizon, for stochastic control systems with non-analytic dynamics. The linear system under consideration is modeled by a linear stochastic differential equation with noise in the control, and with a
C
0
-semigroup driving the deterministic component of the dynamics, and unbounded control action satisfying a singular estimate. We derive the feedback relation for the optimal control in terms of the optimal state via an operator solving an Algebraic Riccati equation. We show that the algebraic Riccati equation is well posed and has a unique solution in an appropriate class. These systems are typically coupled systems of stochastic partial differential equations comprising both parabolic and hyperbolic components with point or boundary control.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-023-09969-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Applied mathematics ; Boundary control ; Calculus of Variations and Optimal Control; Optimization ; Control ; Hilbert space ; Integral equations ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Noise control ; Numerical and Computational Physics ; Operators (mathematics) ; Optimal control ; Optimization ; Partial differential equations ; Riccati equation ; Simulation ; Stochastic processes ; Systems analysis ; Systems Theory ; Theoretical</subject><ispartof>Applied mathematics & optimization, 2023-06, Vol.87 (3), p.58, Article 58</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-10b377f58249c174014f4c1b4b63a018c7e9fcc1a9c60105a9eb2a9e1cd1cbeb3</citedby><cites>FETCH-LOGICAL-c319t-10b377f58249c174014f4c1b4b63a018c7e9fcc1a9c60105a9eb2a9e1cd1cbeb3</cites><orcidid>0000-0001-8468-0688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2797451027/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2797451027?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Tuffaha, Amjad</creatorcontrib><title>The Stochastic Linear Quadratic Optimal Control Problem on Hilbert Spaces: The Case of Non-analytic Systems</title><title>Applied mathematics & optimization</title><addtitle>Appl Math Optim</addtitle><description>We derive the algebraic Riccati equation associated with the infinite dimensional linear quadratic stochastic optimal control problem on an infinite horizon, for stochastic control systems with non-analytic dynamics. The linear system under consideration is modeled by a linear stochastic differential equation with noise in the control, and with a
C
0
-semigroup driving the deterministic component of the dynamics, and unbounded control action satisfying a singular estimate. We derive the feedback relation for the optimal control in terms of the optimal state via an operator solving an Algebraic Riccati equation. We show that the algebraic Riccati equation is well posed and has a unique solution in an appropriate class. These systems are typically coupled systems of stochastic partial differential equations comprising both parabolic and hyperbolic components with point or boundary control.</description><subject>Algebra</subject><subject>Applied mathematics</subject><subject>Boundary control</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Hilbert space</subject><subject>Integral equations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Noise control</subject><subject>Numerical and Computational Physics</subject><subject>Operators (mathematics)</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Riccati equation</subject><subject>Simulation</subject><subject>Stochastic processes</subject><subject>Systems analysis</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kEFLwzAUx4MoOKdfwFPAc_S9Jm0Wb1LUCcMpm-eQZqmrdk1NusO-va0VvHnJg_D7_3jvT8glwjUCyJsIkIiUQcIZKJUphkdkgoInDDLIjskEQKVMZJidkrMYP6DnecYn5HO9dXTVebs1sassXVSNM4G-7s0mmOFj2XbVztQ0900XfE1fgi9qt6O-ofOqLlzo6Ko11sVbOqhyEx31JX32DTONqQ-DY3WIndvFc3JSmjq6i985JW8P9-t8zhbLx6f8bsEsR9UxhIJLWaazRCiLUgCKUlgsRJFxAziz0qnSWjTKZoCQGuWKpH_QbtAWruBTcjV62-C_9i52-sPvQ79M1IlUUqQIieypZKRs8DEGV-o29JeGg0bQQ6l6LFX3TemfUjX2IT6GYg837y78qf9JfQOIKXod</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Tuffaha, Amjad</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8468-0688</orcidid></search><sort><creationdate>20230601</creationdate><title>The Stochastic Linear Quadratic Optimal Control Problem on Hilbert Spaces: The Case of Non-analytic Systems</title><author>Tuffaha, Amjad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-10b377f58249c174014f4c1b4b63a018c7e9fcc1a9c60105a9eb2a9e1cd1cbeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Applied mathematics</topic><topic>Boundary control</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Hilbert space</topic><topic>Integral equations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Noise control</topic><topic>Numerical and Computational Physics</topic><topic>Operators (mathematics)</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Riccati equation</topic><topic>Simulation</topic><topic>Stochastic processes</topic><topic>Systems analysis</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuffaha, Amjad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied mathematics & optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuffaha, Amjad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Stochastic Linear Quadratic Optimal Control Problem on Hilbert Spaces: The Case of Non-analytic Systems</atitle><jtitle>Applied mathematics & optimization</jtitle><stitle>Appl Math Optim</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>87</volume><issue>3</issue><spage>58</spage><pages>58-</pages><artnum>58</artnum><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>We derive the algebraic Riccati equation associated with the infinite dimensional linear quadratic stochastic optimal control problem on an infinite horizon, for stochastic control systems with non-analytic dynamics. The linear system under consideration is modeled by a linear stochastic differential equation with noise in the control, and with a
C
0
-semigroup driving the deterministic component of the dynamics, and unbounded control action satisfying a singular estimate. We derive the feedback relation for the optimal control in terms of the optimal state via an operator solving an Algebraic Riccati equation. We show that the algebraic Riccati equation is well posed and has a unique solution in an appropriate class. These systems are typically coupled systems of stochastic partial differential equations comprising both parabolic and hyperbolic components with point or boundary control.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-023-09969-1</doi><orcidid>https://orcid.org/0000-0001-8468-0688</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-4616 |
ispartof | Applied mathematics & optimization, 2023-06, Vol.87 (3), p.58, Article 58 |
issn | 0095-4616 1432-0606 |
language | eng |
recordid | cdi_proquest_journals_2797451027 |
source | Business Source Ultimate; ABI/INFORM Global; Springer Link |
subjects | Algebra Applied mathematics Boundary control Calculus of Variations and Optimal Control Optimization Control Hilbert space Integral equations Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Noise control Numerical and Computational Physics Operators (mathematics) Optimal control Optimization Partial differential equations Riccati equation Simulation Stochastic processes Systems analysis Systems Theory Theoretical |
title | The Stochastic Linear Quadratic Optimal Control Problem on Hilbert Spaces: The Case of Non-analytic Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Stochastic%20Linear%20Quadratic%20Optimal%20Control%20Problem%20on%20Hilbert%20Spaces:%20The%20Case%20of%20Non-analytic%20Systems&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Tuffaha,%20Amjad&rft.date=2023-06-01&rft.volume=87&rft.issue=3&rft.spage=58&rft.pages=58-&rft.artnum=58&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-023-09969-1&rft_dat=%3Cproquest_cross%3E2797451027%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-10b377f58249c174014f4c1b4b63a018c7e9fcc1a9c60105a9eb2a9e1cd1cbeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2797451027&rft_id=info:pmid/&rfr_iscdi=true |