Loading…
On self-adaptive 5G network slice QoS management system: a deep reinforcement learning approach
Along with the development of mobile network communication standards to the fifth generation, the complexity of network usage patterns has increased. The concept of network slicing is proposed to improve the utilization rate of network and computing resources, and to provide corresponding service qu...
Saved in:
Published in: | Wireless networks 2023-04, Vol.29 (3), p.1269-1279 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-dc14cd403d9c05b4dea416617ac5a812b95398a2359ea7c0cde4571d3dcdd1d83 |
container_end_page | 1279 |
container_issue | 3 |
container_start_page | 1269 |
container_title | Wireless networks |
container_volume | 29 |
creator | Cheng, Sheng-Tzong He, Chang Yu Lyu, Ya-Jin Deng, Der-Jiunn |
description | Along with the development of mobile network communication standards to the fifth generation, the complexity of network usage patterns has increased. The concept of network slicing is proposed to improve the utilization rate of network and computing resources, and to provide corresponding service quality for different network applications. In this paper, we propose a self-adaptive quality of service (QoS) management system which can be added to the 5G core network architecture, using network usage behavior and service level agreements (SLA) to generate corresponding QoS marking rules and enhance 5G core networks’ QoS mechanism. In response to the fact that user behavior changes over time, our system leverages deep reinforcement learning methods to dynamically generate QoS marking rules based on user behavior. In terms of experiments, we use a NS-3 network simulator to initially validate the system and observe that, as the training progresses, the measured network QoS KPIs of users become closer to the SLA. |
doi_str_mv | 10.1007/s11276-022-03181-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2797452133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2797452133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-dc14cd403d9c05b4dea416617ac5a812b95398a2359ea7c0cde4571d3dcdd1d83</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKf_gKeA52pe0jSNNxk6hYGIeg5Z8jo7u7QmnbL_3roK3jy9B99f8CHkHNglMKauEgBXRcY4z5iAEjJ9QCYgFc9K0MXh8O8lJspjcpLSmjFWCq0nxDwGmrCpMutt19efSOWcBuy_2vhOU1M7pE_tM93YYFe4wdDTtEs9bq6ppR6xoxHrULXRjWKDNoY6rKjtutha93ZKjirbJDz7vVPyenf7MrvPFo_zh9nNInNcsT7zDnLncya8dkwuc482h6IAZZ20JfCllkKXlgup0SrHnMdcKvDCO-_Bl2JKLsbeYfZji6k363YbwzBpuNIqlxyEGFx8dLnYphSxMl2sNzbuDDDzA9KMIM1Ay-xBGj2ExBhKgzmsMP5V_5P6BtQUdow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797452133</pqid></control><display><type>article</type><title>On self-adaptive 5G network slice QoS management system: a deep reinforcement learning approach</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Cheng, Sheng-Tzong ; He, Chang Yu ; Lyu, Ya-Jin ; Deng, Der-Jiunn</creator><creatorcontrib>Cheng, Sheng-Tzong ; He, Chang Yu ; Lyu, Ya-Jin ; Deng, Der-Jiunn</creatorcontrib><description>Along with the development of mobile network communication standards to the fifth generation, the complexity of network usage patterns has increased. The concept of network slicing is proposed to improve the utilization rate of network and computing resources, and to provide corresponding service quality for different network applications. In this paper, we propose a self-adaptive quality of service (QoS) management system which can be added to the 5G core network architecture, using network usage behavior and service level agreements (SLA) to generate corresponding QoS marking rules and enhance 5G core networks’ QoS mechanism. In response to the fact that user behavior changes over time, our system leverages deep reinforcement learning methods to dynamically generate QoS marking rules based on user behavior. In terms of experiments, we use a NS-3 network simulator to initially validate the system and observe that, as the training progresses, the measured network QoS KPIs of users become closer to the SLA.</description><identifier>ISSN: 1022-0038</identifier><identifier>EISSN: 1572-8196</identifier><identifier>DOI: 10.1007/s11276-022-03181-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>5G mobile communication ; Communications Engineering ; Computer architecture ; Computer Communication Networks ; Deep learning ; Electrical Engineering ; Engineering ; IT in Business ; Marking ; Networks ; Original Paper ; Quality of service ; Quality of service architectures ; User behavior ; Wireless networks</subject><ispartof>Wireless networks, 2023-04, Vol.29 (3), p.1269-1279</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-dc14cd403d9c05b4dea416617ac5a812b95398a2359ea7c0cde4571d3dcdd1d83</cites><orcidid>0000-0001-8410-164X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2797452133/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2797452133?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Cheng, Sheng-Tzong</creatorcontrib><creatorcontrib>He, Chang Yu</creatorcontrib><creatorcontrib>Lyu, Ya-Jin</creatorcontrib><creatorcontrib>Deng, Der-Jiunn</creatorcontrib><title>On self-adaptive 5G network slice QoS management system: a deep reinforcement learning approach</title><title>Wireless networks</title><addtitle>Wireless Netw</addtitle><description>Along with the development of mobile network communication standards to the fifth generation, the complexity of network usage patterns has increased. The concept of network slicing is proposed to improve the utilization rate of network and computing resources, and to provide corresponding service quality for different network applications. In this paper, we propose a self-adaptive quality of service (QoS) management system which can be added to the 5G core network architecture, using network usage behavior and service level agreements (SLA) to generate corresponding QoS marking rules and enhance 5G core networks’ QoS mechanism. In response to the fact that user behavior changes over time, our system leverages deep reinforcement learning methods to dynamically generate QoS marking rules based on user behavior. In terms of experiments, we use a NS-3 network simulator to initially validate the system and observe that, as the training progresses, the measured network QoS KPIs of users become closer to the SLA.</description><subject>5G mobile communication</subject><subject>Communications Engineering</subject><subject>Computer architecture</subject><subject>Computer Communication Networks</subject><subject>Deep learning</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>IT in Business</subject><subject>Marking</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Quality of service</subject><subject>Quality of service architectures</subject><subject>User behavior</subject><subject>Wireless networks</subject><issn>1022-0038</issn><issn>1572-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kM9LwzAUx4MoOKf_gKeA52pe0jSNNxk6hYGIeg5Z8jo7u7QmnbL_3roK3jy9B99f8CHkHNglMKauEgBXRcY4z5iAEjJ9QCYgFc9K0MXh8O8lJspjcpLSmjFWCq0nxDwGmrCpMutt19efSOWcBuy_2vhOU1M7pE_tM93YYFe4wdDTtEs9bq6ppR6xoxHrULXRjWKDNoY6rKjtutha93ZKjirbJDz7vVPyenf7MrvPFo_zh9nNInNcsT7zDnLncya8dkwuc482h6IAZZ20JfCllkKXlgup0SrHnMdcKvDCO-_Bl2JKLsbeYfZji6k363YbwzBpuNIqlxyEGFx8dLnYphSxMl2sNzbuDDDzA9KMIM1Ay-xBGj2ExBhKgzmsMP5V_5P6BtQUdow</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Cheng, Sheng-Tzong</creator><creator>He, Chang Yu</creator><creator>Lyu, Ya-Jin</creator><creator>Deng, Der-Jiunn</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8410-164X</orcidid></search><sort><creationdate>20230401</creationdate><title>On self-adaptive 5G network slice QoS management system: a deep reinforcement learning approach</title><author>Cheng, Sheng-Tzong ; He, Chang Yu ; Lyu, Ya-Jin ; Deng, Der-Jiunn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-dc14cd403d9c05b4dea416617ac5a812b95398a2359ea7c0cde4571d3dcdd1d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5G mobile communication</topic><topic>Communications Engineering</topic><topic>Computer architecture</topic><topic>Computer Communication Networks</topic><topic>Deep learning</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>IT in Business</topic><topic>Marking</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Quality of service</topic><topic>Quality of service architectures</topic><topic>User behavior</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Sheng-Tzong</creatorcontrib><creatorcontrib>He, Chang Yu</creatorcontrib><creatorcontrib>Lyu, Ya-Jin</creatorcontrib><creatorcontrib>Deng, Der-Jiunn</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Sheng-Tzong</au><au>He, Chang Yu</au><au>Lyu, Ya-Jin</au><au>Deng, Der-Jiunn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On self-adaptive 5G network slice QoS management system: a deep reinforcement learning approach</atitle><jtitle>Wireless networks</jtitle><stitle>Wireless Netw</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>29</volume><issue>3</issue><spage>1269</spage><epage>1279</epage><pages>1269-1279</pages><issn>1022-0038</issn><eissn>1572-8196</eissn><abstract>Along with the development of mobile network communication standards to the fifth generation, the complexity of network usage patterns has increased. The concept of network slicing is proposed to improve the utilization rate of network and computing resources, and to provide corresponding service quality for different network applications. In this paper, we propose a self-adaptive quality of service (QoS) management system which can be added to the 5G core network architecture, using network usage behavior and service level agreements (SLA) to generate corresponding QoS marking rules and enhance 5G core networks’ QoS mechanism. In response to the fact that user behavior changes over time, our system leverages deep reinforcement learning methods to dynamically generate QoS marking rules based on user behavior. In terms of experiments, we use a NS-3 network simulator to initially validate the system and observe that, as the training progresses, the measured network QoS KPIs of users become closer to the SLA.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11276-022-03181-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8410-164X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-0038 |
ispartof | Wireless networks, 2023-04, Vol.29 (3), p.1269-1279 |
issn | 1022-0038 1572-8196 |
language | eng |
recordid | cdi_proquest_journals_2797452133 |
source | ABI/INFORM Global; Springer Link |
subjects | 5G mobile communication Communications Engineering Computer architecture Computer Communication Networks Deep learning Electrical Engineering Engineering IT in Business Marking Networks Original Paper Quality of service Quality of service architectures User behavior Wireless networks |
title | On self-adaptive 5G network slice QoS management system: a deep reinforcement learning approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20self-adaptive%205G%20network%20slice%20QoS%20management%20system:%20a%20deep%20reinforcement%20learning%20approach&rft.jtitle=Wireless%20networks&rft.au=Cheng,%20Sheng-Tzong&rft.date=2023-04-01&rft.volume=29&rft.issue=3&rft.spage=1269&rft.epage=1279&rft.pages=1269-1279&rft.issn=1022-0038&rft.eissn=1572-8196&rft_id=info:doi/10.1007/s11276-022-03181-9&rft_dat=%3Cproquest_cross%3E2797452133%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-dc14cd403d9c05b4dea416617ac5a812b95398a2359ea7c0cde4571d3dcdd1d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2797452133&rft_id=info:pmid/&rfr_iscdi=true |