Loading…

On self-adaptive 5G network slice QoS management system: a deep reinforcement learning approach

Along with the development of mobile network communication standards to the fifth generation, the complexity of network usage patterns has increased. The concept of network slicing is proposed to improve the utilization rate of network and computing resources, and to provide corresponding service qu...

Full description

Saved in:
Bibliographic Details
Published in:Wireless networks 2023-04, Vol.29 (3), p.1269-1279
Main Authors: Cheng, Sheng-Tzong, He, Chang Yu, Lyu, Ya-Jin, Deng, Der-Jiunn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-dc14cd403d9c05b4dea416617ac5a812b95398a2359ea7c0cde4571d3dcdd1d83
container_end_page 1279
container_issue 3
container_start_page 1269
container_title Wireless networks
container_volume 29
creator Cheng, Sheng-Tzong
He, Chang Yu
Lyu, Ya-Jin
Deng, Der-Jiunn
description Along with the development of mobile network communication standards to the fifth generation, the complexity of network usage patterns has increased. The concept of network slicing is proposed to improve the utilization rate of network and computing resources, and to provide corresponding service quality for different network applications. In this paper, we propose a self-adaptive quality of service (QoS) management system which can be added to the 5G core network architecture, using network usage behavior and service level agreements (SLA) to generate corresponding QoS marking rules and enhance 5G core networks’ QoS mechanism. In response to the fact that user behavior changes over time, our system leverages deep reinforcement learning methods to dynamically generate QoS marking rules based on user behavior. In terms of experiments, we use a NS-3 network simulator to initially validate the system and observe that, as the training progresses, the measured network QoS KPIs of users become closer to the SLA.
doi_str_mv 10.1007/s11276-022-03181-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2797452133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2797452133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-dc14cd403d9c05b4dea416617ac5a812b95398a2359ea7c0cde4571d3dcdd1d83</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKf_gKeA52pe0jSNNxk6hYGIeg5Z8jo7u7QmnbL_3roK3jy9B99f8CHkHNglMKauEgBXRcY4z5iAEjJ9QCYgFc9K0MXh8O8lJspjcpLSmjFWCq0nxDwGmrCpMutt19efSOWcBuy_2vhOU1M7pE_tM93YYFe4wdDTtEs9bq6ppR6xoxHrULXRjWKDNoY6rKjtutha93ZKjirbJDz7vVPyenf7MrvPFo_zh9nNInNcsT7zDnLncya8dkwuc482h6IAZZ20JfCllkKXlgup0SrHnMdcKvDCO-_Bl2JKLsbeYfZji6k363YbwzBpuNIqlxyEGFx8dLnYphSxMl2sNzbuDDDzA9KMIM1Ay-xBGj2ExBhKgzmsMP5V_5P6BtQUdow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797452133</pqid></control><display><type>article</type><title>On self-adaptive 5G network slice QoS management system: a deep reinforcement learning approach</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Cheng, Sheng-Tzong ; He, Chang Yu ; Lyu, Ya-Jin ; Deng, Der-Jiunn</creator><creatorcontrib>Cheng, Sheng-Tzong ; He, Chang Yu ; Lyu, Ya-Jin ; Deng, Der-Jiunn</creatorcontrib><description>Along with the development of mobile network communication standards to the fifth generation, the complexity of network usage patterns has increased. The concept of network slicing is proposed to improve the utilization rate of network and computing resources, and to provide corresponding service quality for different network applications. In this paper, we propose a self-adaptive quality of service (QoS) management system which can be added to the 5G core network architecture, using network usage behavior and service level agreements (SLA) to generate corresponding QoS marking rules and enhance 5G core networks’ QoS mechanism. In response to the fact that user behavior changes over time, our system leverages deep reinforcement learning methods to dynamically generate QoS marking rules based on user behavior. In terms of experiments, we use a NS-3 network simulator to initially validate the system and observe that, as the training progresses, the measured network QoS KPIs of users become closer to the SLA.</description><identifier>ISSN: 1022-0038</identifier><identifier>EISSN: 1572-8196</identifier><identifier>DOI: 10.1007/s11276-022-03181-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>5G mobile communication ; Communications Engineering ; Computer architecture ; Computer Communication Networks ; Deep learning ; Electrical Engineering ; Engineering ; IT in Business ; Marking ; Networks ; Original Paper ; Quality of service ; Quality of service architectures ; User behavior ; Wireless networks</subject><ispartof>Wireless networks, 2023-04, Vol.29 (3), p.1269-1279</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-dc14cd403d9c05b4dea416617ac5a812b95398a2359ea7c0cde4571d3dcdd1d83</cites><orcidid>0000-0001-8410-164X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2797452133/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2797452133?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Cheng, Sheng-Tzong</creatorcontrib><creatorcontrib>He, Chang Yu</creatorcontrib><creatorcontrib>Lyu, Ya-Jin</creatorcontrib><creatorcontrib>Deng, Der-Jiunn</creatorcontrib><title>On self-adaptive 5G network slice QoS management system: a deep reinforcement learning approach</title><title>Wireless networks</title><addtitle>Wireless Netw</addtitle><description>Along with the development of mobile network communication standards to the fifth generation, the complexity of network usage patterns has increased. The concept of network slicing is proposed to improve the utilization rate of network and computing resources, and to provide corresponding service quality for different network applications. In this paper, we propose a self-adaptive quality of service (QoS) management system which can be added to the 5G core network architecture, using network usage behavior and service level agreements (SLA) to generate corresponding QoS marking rules and enhance 5G core networks’ QoS mechanism. In response to the fact that user behavior changes over time, our system leverages deep reinforcement learning methods to dynamically generate QoS marking rules based on user behavior. In terms of experiments, we use a NS-3 network simulator to initially validate the system and observe that, as the training progresses, the measured network QoS KPIs of users become closer to the SLA.</description><subject>5G mobile communication</subject><subject>Communications Engineering</subject><subject>Computer architecture</subject><subject>Computer Communication Networks</subject><subject>Deep learning</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>IT in Business</subject><subject>Marking</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Quality of service</subject><subject>Quality of service architectures</subject><subject>User behavior</subject><subject>Wireless networks</subject><issn>1022-0038</issn><issn>1572-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kM9LwzAUx4MoOKf_gKeA52pe0jSNNxk6hYGIeg5Z8jo7u7QmnbL_3roK3jy9B99f8CHkHNglMKauEgBXRcY4z5iAEjJ9QCYgFc9K0MXh8O8lJspjcpLSmjFWCq0nxDwGmrCpMutt19efSOWcBuy_2vhOU1M7pE_tM93YYFe4wdDTtEs9bq6ppR6xoxHrULXRjWKDNoY6rKjtutha93ZKjirbJDz7vVPyenf7MrvPFo_zh9nNInNcsT7zDnLncya8dkwuc482h6IAZZ20JfCllkKXlgup0SrHnMdcKvDCO-_Bl2JKLsbeYfZji6k363YbwzBpuNIqlxyEGFx8dLnYphSxMl2sNzbuDDDzA9KMIM1Ay-xBGj2ExBhKgzmsMP5V_5P6BtQUdow</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Cheng, Sheng-Tzong</creator><creator>He, Chang Yu</creator><creator>Lyu, Ya-Jin</creator><creator>Deng, Der-Jiunn</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8410-164X</orcidid></search><sort><creationdate>20230401</creationdate><title>On self-adaptive 5G network slice QoS management system: a deep reinforcement learning approach</title><author>Cheng, Sheng-Tzong ; He, Chang Yu ; Lyu, Ya-Jin ; Deng, Der-Jiunn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-dc14cd403d9c05b4dea416617ac5a812b95398a2359ea7c0cde4571d3dcdd1d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5G mobile communication</topic><topic>Communications Engineering</topic><topic>Computer architecture</topic><topic>Computer Communication Networks</topic><topic>Deep learning</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>IT in Business</topic><topic>Marking</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Quality of service</topic><topic>Quality of service architectures</topic><topic>User behavior</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Sheng-Tzong</creatorcontrib><creatorcontrib>He, Chang Yu</creatorcontrib><creatorcontrib>Lyu, Ya-Jin</creatorcontrib><creatorcontrib>Deng, Der-Jiunn</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Sheng-Tzong</au><au>He, Chang Yu</au><au>Lyu, Ya-Jin</au><au>Deng, Der-Jiunn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On self-adaptive 5G network slice QoS management system: a deep reinforcement learning approach</atitle><jtitle>Wireless networks</jtitle><stitle>Wireless Netw</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>29</volume><issue>3</issue><spage>1269</spage><epage>1279</epage><pages>1269-1279</pages><issn>1022-0038</issn><eissn>1572-8196</eissn><abstract>Along with the development of mobile network communication standards to the fifth generation, the complexity of network usage patterns has increased. The concept of network slicing is proposed to improve the utilization rate of network and computing resources, and to provide corresponding service quality for different network applications. In this paper, we propose a self-adaptive quality of service (QoS) management system which can be added to the 5G core network architecture, using network usage behavior and service level agreements (SLA) to generate corresponding QoS marking rules and enhance 5G core networks’ QoS mechanism. In response to the fact that user behavior changes over time, our system leverages deep reinforcement learning methods to dynamically generate QoS marking rules based on user behavior. In terms of experiments, we use a NS-3 network simulator to initially validate the system and observe that, as the training progresses, the measured network QoS KPIs of users become closer to the SLA.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11276-022-03181-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8410-164X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-0038
ispartof Wireless networks, 2023-04, Vol.29 (3), p.1269-1279
issn 1022-0038
1572-8196
language eng
recordid cdi_proquest_journals_2797452133
source ABI/INFORM Global; Springer Link
subjects 5G mobile communication
Communications Engineering
Computer architecture
Computer Communication Networks
Deep learning
Electrical Engineering
Engineering
IT in Business
Marking
Networks
Original Paper
Quality of service
Quality of service architectures
User behavior
Wireless networks
title On self-adaptive 5G network slice QoS management system: a deep reinforcement learning approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20self-adaptive%205G%20network%20slice%20QoS%20management%20system:%20a%20deep%20reinforcement%20learning%20approach&rft.jtitle=Wireless%20networks&rft.au=Cheng,%20Sheng-Tzong&rft.date=2023-04-01&rft.volume=29&rft.issue=3&rft.spage=1269&rft.epage=1279&rft.pages=1269-1279&rft.issn=1022-0038&rft.eissn=1572-8196&rft_id=info:doi/10.1007/s11276-022-03181-9&rft_dat=%3Cproquest_cross%3E2797452133%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-dc14cd403d9c05b4dea416617ac5a812b95398a2359ea7c0cde4571d3dcdd1d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2797452133&rft_id=info:pmid/&rfr_iscdi=true