Loading…
Nonlinear Photonic Waveguides: A Versatile Platform for Terahertz Radiation Generation (a Review)
Continued development in the areas of communication, security, medicine, and safety is calling for terahertz‐wave technologies to evolve beyond laboratory research and into the realm of real‐world applications. Due to the compatibility of waveguides with on‐chip fabrication techniques and their abil...
Saved in:
Published in: | Laser & photonics reviews 2023-04, Vol.17 (4), p.n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3178-43ac633ea2ebf00c948d633914e2fe1d7ffd56493f2fbc63a5493e954972baf13 |
---|---|
cites | cdi_FETCH-LOGICAL-c3178-43ac633ea2ebf00c948d633914e2fe1d7ffd56493f2fbc63a5493e954972baf13 |
container_end_page | n/a |
container_issue | 4 |
container_start_page | |
container_title | Laser & photonics reviews |
container_volume | 17 |
creator | Carnio, Brett N. Moutanabbir, Oussama Elezzabi, Abdulhakem Y. |
description | Continued development in the areas of communication, security, medicine, and safety is calling for terahertz‐wave technologies to evolve beyond laboratory research and into the realm of real‐world applications. Due to the compatibility of waveguides with on‐chip fabrication techniques and their ability to realize a small footprint, such structures provide a unique opportunity to achieve terahertz radiation generation in an on‐chip arrangement, ideal for practical applications requiring terahertz electric fields. This review considers waveguiding arrangements that produce terahertz radiation using the nonlinear frequency‐conversion techniques of optical rectification and difference frequency generation. The investigated terahertz radiation waveguiding sources are categorized into three different classes: those that confine and guide both the excitation electric fields and the generated terahertz radiation, those that confine and guide the excitation electric fields but not the generated terahertz radiation, and those that confine and guide the generated terahertz radiation but not the excitation electric fields. Various types of waveguides are surveyed from each category, including dielectric waveguides, metallic waveguides, photonic crystal waveguides, poled waveguides, and multiple waveguides embedded within one another. This review provides a detailed overview of state‐of‐the‐art terahertz radiation waveguide sources, with the intent of aiding in the continuing development of such sources.
Real‐world application demand in the realm of terahertz radiation technologies is providing motivation to develop compact sources of terahertz electric fields. Waveguides are shown to provide a key platform in realizing on‐chip terahertz electric field generation, with the compact on‐chip terahertz radiation sources exhibiting compatibility with existing integrated circuits. |
doi_str_mv | 10.1002/lpor.202200138 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2797455305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2797455305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-43ac633ea2ebf00c948d633914e2fe1d7ffd56493f2fbc63a5493e954972baf13</originalsourceid><addsrcrecordid>eNqFkEtPAjEUhRujiYhuXTdxo4vBPubRuiME0YQIIajLpszcypBhiu0AwV9vEYNL7-Lc0-Y7bXIQuqakQwlh99XKug4jjBFCuThBLSpSHgkh5enRC3KOLrxfEJKESVtIv9i6KmvQDo_ntrF1meN3vYGPdVmAf8Bd_AbO66asAI8r3RjrljgInoLTc3DNF57oogyArfEA6nD7Y281nsCmhO3dJTozuvJw9bvb6PWxP-09RcPR4LnXHUY5p5mIYq7zlHPQDGaGkFzGoghnSWNgBmiRGVMkaSy5YWYWSJ0EDzJoxmbaUN5GN4d3V85-rsE3amHXrg5fKpbJLE4STpJAdQ5U7qz3DoxauXKp3U5RovY1qn2N6lhjCMhDYBsq2P1Dq-F4NPnLfgOXNHdL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797455305</pqid></control><display><type>article</type><title>Nonlinear Photonic Waveguides: A Versatile Platform for Terahertz Radiation Generation (a Review)</title><source>Wiley</source><creator>Carnio, Brett N. ; Moutanabbir, Oussama ; Elezzabi, Abdulhakem Y.</creator><creatorcontrib>Carnio, Brett N. ; Moutanabbir, Oussama ; Elezzabi, Abdulhakem Y.</creatorcontrib><description>Continued development in the areas of communication, security, medicine, and safety is calling for terahertz‐wave technologies to evolve beyond laboratory research and into the realm of real‐world applications. Due to the compatibility of waveguides with on‐chip fabrication techniques and their ability to realize a small footprint, such structures provide a unique opportunity to achieve terahertz radiation generation in an on‐chip arrangement, ideal for practical applications requiring terahertz electric fields. This review considers waveguiding arrangements that produce terahertz radiation using the nonlinear frequency‐conversion techniques of optical rectification and difference frequency generation. The investigated terahertz radiation waveguiding sources are categorized into three different classes: those that confine and guide both the excitation electric fields and the generated terahertz radiation, those that confine and guide the excitation electric fields but not the generated terahertz radiation, and those that confine and guide the generated terahertz radiation but not the excitation electric fields. Various types of waveguides are surveyed from each category, including dielectric waveguides, metallic waveguides, photonic crystal waveguides, poled waveguides, and multiple waveguides embedded within one another. This review provides a detailed overview of state‐of‐the‐art terahertz radiation waveguide sources, with the intent of aiding in the continuing development of such sources.
Real‐world application demand in the realm of terahertz radiation technologies is providing motivation to develop compact sources of terahertz electric fields. Waveguides are shown to provide a key platform in realizing on‐chip terahertz electric field generation, with the compact on‐chip terahertz radiation sources exhibiting compatibility with existing integrated circuits.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202200138</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Dielectric waveguides ; difference frequency generation ; Doppler effect ; Electric fields ; Excitation ; nonlinear optics ; optical rectification ; Photonic crystals ; Radiation ; terahertz ; Terahertz frequencies ; waveguides</subject><ispartof>Laser & photonics reviews, 2023-04, Vol.17 (4), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-43ac633ea2ebf00c948d633914e2fe1d7ffd56493f2fbc63a5493e954972baf13</citedby><cites>FETCH-LOGICAL-c3178-43ac633ea2ebf00c948d633914e2fe1d7ffd56493f2fbc63a5493e954972baf13</cites><orcidid>0000-0002-9420-8026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Carnio, Brett N.</creatorcontrib><creatorcontrib>Moutanabbir, Oussama</creatorcontrib><creatorcontrib>Elezzabi, Abdulhakem Y.</creatorcontrib><title>Nonlinear Photonic Waveguides: A Versatile Platform for Terahertz Radiation Generation (a Review)</title><title>Laser & photonics reviews</title><description>Continued development in the areas of communication, security, medicine, and safety is calling for terahertz‐wave technologies to evolve beyond laboratory research and into the realm of real‐world applications. Due to the compatibility of waveguides with on‐chip fabrication techniques and their ability to realize a small footprint, such structures provide a unique opportunity to achieve terahertz radiation generation in an on‐chip arrangement, ideal for practical applications requiring terahertz electric fields. This review considers waveguiding arrangements that produce terahertz radiation using the nonlinear frequency‐conversion techniques of optical rectification and difference frequency generation. The investigated terahertz radiation waveguiding sources are categorized into three different classes: those that confine and guide both the excitation electric fields and the generated terahertz radiation, those that confine and guide the excitation electric fields but not the generated terahertz radiation, and those that confine and guide the generated terahertz radiation but not the excitation electric fields. Various types of waveguides are surveyed from each category, including dielectric waveguides, metallic waveguides, photonic crystal waveguides, poled waveguides, and multiple waveguides embedded within one another. This review provides a detailed overview of state‐of‐the‐art terahertz radiation waveguide sources, with the intent of aiding in the continuing development of such sources.
Real‐world application demand in the realm of terahertz radiation technologies is providing motivation to develop compact sources of terahertz electric fields. Waveguides are shown to provide a key platform in realizing on‐chip terahertz electric field generation, with the compact on‐chip terahertz radiation sources exhibiting compatibility with existing integrated circuits.</description><subject>Dielectric waveguides</subject><subject>difference frequency generation</subject><subject>Doppler effect</subject><subject>Electric fields</subject><subject>Excitation</subject><subject>nonlinear optics</subject><subject>optical rectification</subject><subject>Photonic crystals</subject><subject>Radiation</subject><subject>terahertz</subject><subject>Terahertz frequencies</subject><subject>waveguides</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAjEUhRujiYhuXTdxo4vBPubRuiME0YQIIajLpszcypBhiu0AwV9vEYNL7-Lc0-Y7bXIQuqakQwlh99XKug4jjBFCuThBLSpSHgkh5enRC3KOLrxfEJKESVtIv9i6KmvQDo_ntrF1meN3vYGPdVmAf8Bd_AbO66asAI8r3RjrljgInoLTc3DNF57oogyArfEA6nD7Y281nsCmhO3dJTozuvJw9bvb6PWxP-09RcPR4LnXHUY5p5mIYq7zlHPQDGaGkFzGoghnSWNgBmiRGVMkaSy5YWYWSJ0EDzJoxmbaUN5GN4d3V85-rsE3amHXrg5fKpbJLE4STpJAdQ5U7qz3DoxauXKp3U5RovY1qn2N6lhjCMhDYBsq2P1Dq-F4NPnLfgOXNHdL</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Carnio, Brett N.</creator><creator>Moutanabbir, Oussama</creator><creator>Elezzabi, Abdulhakem Y.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9420-8026</orcidid></search><sort><creationdate>202304</creationdate><title>Nonlinear Photonic Waveguides: A Versatile Platform for Terahertz Radiation Generation (a Review)</title><author>Carnio, Brett N. ; Moutanabbir, Oussama ; Elezzabi, Abdulhakem Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-43ac633ea2ebf00c948d633914e2fe1d7ffd56493f2fbc63a5493e954972baf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dielectric waveguides</topic><topic>difference frequency generation</topic><topic>Doppler effect</topic><topic>Electric fields</topic><topic>Excitation</topic><topic>nonlinear optics</topic><topic>optical rectification</topic><topic>Photonic crystals</topic><topic>Radiation</topic><topic>terahertz</topic><topic>Terahertz frequencies</topic><topic>waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carnio, Brett N.</creatorcontrib><creatorcontrib>Moutanabbir, Oussama</creatorcontrib><creatorcontrib>Elezzabi, Abdulhakem Y.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser & photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carnio, Brett N.</au><au>Moutanabbir, Oussama</au><au>Elezzabi, Abdulhakem Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Photonic Waveguides: A Versatile Platform for Terahertz Radiation Generation (a Review)</atitle><jtitle>Laser & photonics reviews</jtitle><date>2023-04</date><risdate>2023</risdate><volume>17</volume><issue>4</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Continued development in the areas of communication, security, medicine, and safety is calling for terahertz‐wave technologies to evolve beyond laboratory research and into the realm of real‐world applications. Due to the compatibility of waveguides with on‐chip fabrication techniques and their ability to realize a small footprint, such structures provide a unique opportunity to achieve terahertz radiation generation in an on‐chip arrangement, ideal for practical applications requiring terahertz electric fields. This review considers waveguiding arrangements that produce terahertz radiation using the nonlinear frequency‐conversion techniques of optical rectification and difference frequency generation. The investigated terahertz radiation waveguiding sources are categorized into three different classes: those that confine and guide both the excitation electric fields and the generated terahertz radiation, those that confine and guide the excitation electric fields but not the generated terahertz radiation, and those that confine and guide the generated terahertz radiation but not the excitation electric fields. Various types of waveguides are surveyed from each category, including dielectric waveguides, metallic waveguides, photonic crystal waveguides, poled waveguides, and multiple waveguides embedded within one another. This review provides a detailed overview of state‐of‐the‐art terahertz radiation waveguide sources, with the intent of aiding in the continuing development of such sources.
Real‐world application demand in the realm of terahertz radiation technologies is providing motivation to develop compact sources of terahertz electric fields. Waveguides are shown to provide a key platform in realizing on‐chip terahertz electric field generation, with the compact on‐chip terahertz radiation sources exhibiting compatibility with existing integrated circuits.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202200138</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9420-8026</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-8880 |
ispartof | Laser & photonics reviews, 2023-04, Vol.17 (4), p.n/a |
issn | 1863-8880 1863-8899 |
language | eng |
recordid | cdi_proquest_journals_2797455305 |
source | Wiley |
subjects | Dielectric waveguides difference frequency generation Doppler effect Electric fields Excitation nonlinear optics optical rectification Photonic crystals Radiation terahertz Terahertz frequencies waveguides |
title | Nonlinear Photonic Waveguides: A Versatile Platform for Terahertz Radiation Generation (a Review) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T19%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Photonic%20Waveguides:%20A%20Versatile%20Platform%20for%20Terahertz%20Radiation%20Generation%20(a%20Review)&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Carnio,%20Brett%20N.&rft.date=2023-04&rft.volume=17&rft.issue=4&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202200138&rft_dat=%3Cproquest_cross%3E2797455305%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3178-43ac633ea2ebf00c948d633914e2fe1d7ffd56493f2fbc63a5493e954972baf13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2797455305&rft_id=info:pmid/&rfr_iscdi=true |