Loading…
Generalized Chern–Simons–Schrödinger System with Sign-Changing Steep Potential Well: Critical and Subcritical Exponential Case
We consider the following generalized Chern–Simons–Schrödinger system in R 2 - Δ u + ( λ V ( x ) - μ ) u + A 0 u + ∑ j = 1 2 A j 2 u = f ( x , u ) , ∂ 1 A 2 - ∂ 2 A 1 = - 1 2 | u | 2 , ∂ 1 A 1 + ∂ 2 A 2 = 0 , A 1 ∂ 1 u + A 2 ∂ 2 u = 0 , ∂ 1 A 0 = A 2 | u | 2 , ∂ 2 A 0 = - A 1 | u | 2 , where λ >...
Saved in:
Published in: | The Journal of geometric analysis 2023-06, Vol.33 (6), Article 185 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-d1c7a4534735e7c5db6873761d061e9e798bb341b4bff29602fd04f26f7e5f423 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-d1c7a4534735e7c5db6873761d061e9e798bb341b4bff29602fd04f26f7e5f423 |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | The Journal of geometric analysis |
container_volume | 33 |
creator | Pomponio, Alessio Shen, Liejun Zeng, Xiaoyu Zhang, Yimin |
description | We consider the following generalized Chern–Simons–Schrödinger system in
R
2
-
Δ
u
+
(
λ
V
(
x
)
-
μ
)
u
+
A
0
u
+
∑
j
=
1
2
A
j
2
u
=
f
(
x
,
u
)
,
∂
1
A
2
-
∂
2
A
1
=
-
1
2
|
u
|
2
,
∂
1
A
1
+
∂
2
A
2
=
0
,
A
1
∂
1
u
+
A
2
∂
2
u
=
0
,
∂
1
A
0
=
A
2
|
u
|
2
,
∂
2
A
0
=
-
A
1
|
u
|
2
,
where
λ
>
0
is a parameter,
V
∈
C
(
R
2
,
R
+
)
has a potential well
Ω
≜
int
V
-
1
(
0
)
,
μ
∉
{
μ
j
}
j
=
1
∞
with
{
μ
j
}
j
=
1
∞
being the eigenvalues of
(
-
Δ
,
H
0
1
(
Ω
)
)
. If
μ
<
μ
1
, we obtain the existence and concentrating behaviour of ground state solutions for
λ
sufficiently large under some suitable assumptions on
f
having critical exponential growth at infinity. Let
μ
∈
(
μ
j
0
,
μ
j
0
+
1
)
for some
j
0
∈
N
+
, employing the Morse theory, linking argument and the symmetric mountain-pass theorem, we are concerned with the existence and multiplicity of nontrivial solutions for sufficiently large
λ
when
f
has a subcritical exponential growth at infinity. |
doi_str_mv | 10.1007/s12220-023-01244-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2797659683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2797659683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d1c7a4534735e7c5db6873761d061e9e798bb341b4bff29602fd04f26f7e5f423</originalsourceid><addsrcrecordid>eNp9kEtKA0EQhgdRMD4u4KrBdWu_O-NOBo2CoDCK7pp51CQdJj2xe4KPleARvIsX8CaexI5R3Lmqv6j_ryq-JNmj5IASog8DZYwRTBjHhDIhsF5LBlTKFBPC7tajJpJglTK1mWyFMCVEKC70IHkdgQNftPYZapRNwLvPl7fczjoXlqKa-I_32roxeJQ_hR5m6MH2E5TbscPZpHDjOEN5DzBHV10PrrdFi26hbY9Q5m1vq9gWrkb5oqx--5PHeed-rFkRYCfZaIo2wO5P3U5uTk-uszN8cTk6z44vcMXlsMc1rXQhZHybS9CVrEs11FwrWhNFIQWdDsuSC1qKsmlYqghraiIaphoNshGMbyf7q71z390vIPRm2i28iycN06lWMlVDHl1s5ap8F4KHxsy9nRX-yVBilrDNCraJsM03bKNjiK9CIZqXtP5W_5P6AkNshhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797659683</pqid></control><display><type>article</type><title>Generalized Chern–Simons–Schrödinger System with Sign-Changing Steep Potential Well: Critical and Subcritical Exponential Case</title><source>Springer Nature</source><creator>Pomponio, Alessio ; Shen, Liejun ; Zeng, Xiaoyu ; Zhang, Yimin</creator><creatorcontrib>Pomponio, Alessio ; Shen, Liejun ; Zeng, Xiaoyu ; Zhang, Yimin</creatorcontrib><description>We consider the following generalized Chern–Simons–Schrödinger system in
R
2
-
Δ
u
+
(
λ
V
(
x
)
-
μ
)
u
+
A
0
u
+
∑
j
=
1
2
A
j
2
u
=
f
(
x
,
u
)
,
∂
1
A
2
-
∂
2
A
1
=
-
1
2
|
u
|
2
,
∂
1
A
1
+
∂
2
A
2
=
0
,
A
1
∂
1
u
+
A
2
∂
2
u
=
0
,
∂
1
A
0
=
A
2
|
u
|
2
,
∂
2
A
0
=
-
A
1
|
u
|
2
,
where
λ
>
0
is a parameter,
V
∈
C
(
R
2
,
R
+
)
has a potential well
Ω
≜
int
V
-
1
(
0
)
,
μ
∉
{
μ
j
}
j
=
1
∞
with
{
μ
j
}
j
=
1
∞
being the eigenvalues of
(
-
Δ
,
H
0
1
(
Ω
)
)
. If
μ
<
μ
1
, we obtain the existence and concentrating behaviour of ground state solutions for
λ
sufficiently large under some suitable assumptions on
f
having critical exponential growth at infinity. Let
μ
∈
(
μ
j
0
,
μ
j
0
+
1
)
for some
j
0
∈
N
+
, employing the Morse theory, linking argument and the symmetric mountain-pass theorem, we are concerned with the existence and multiplicity of nontrivial solutions for sufficiently large
λ
when
f
has a subcritical exponential growth at infinity.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-023-01244-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Eigenvalues ; Existence theorems ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Infinity ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of geometric analysis, 2023-06, Vol.33 (6), Article 185</ispartof><rights>Mathematica Josephina, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-d1c7a4534735e7c5db6873761d061e9e798bb341b4bff29602fd04f26f7e5f423</citedby><cites>FETCH-LOGICAL-c358t-d1c7a4534735e7c5db6873761d061e9e798bb341b4bff29602fd04f26f7e5f423</cites><orcidid>0000-0002-2194-7629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pomponio, Alessio</creatorcontrib><creatorcontrib>Shen, Liejun</creatorcontrib><creatorcontrib>Zeng, Xiaoyu</creatorcontrib><creatorcontrib>Zhang, Yimin</creatorcontrib><title>Generalized Chern–Simons–Schrödinger System with Sign-Changing Steep Potential Well: Critical and Subcritical Exponential Case</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>We consider the following generalized Chern–Simons–Schrödinger system in
R
2
-
Δ
u
+
(
λ
V
(
x
)
-
μ
)
u
+
A
0
u
+
∑
j
=
1
2
A
j
2
u
=
f
(
x
,
u
)
,
∂
1
A
2
-
∂
2
A
1
=
-
1
2
|
u
|
2
,
∂
1
A
1
+
∂
2
A
2
=
0
,
A
1
∂
1
u
+
A
2
∂
2
u
=
0
,
∂
1
A
0
=
A
2
|
u
|
2
,
∂
2
A
0
=
-
A
1
|
u
|
2
,
where
λ
>
0
is a parameter,
V
∈
C
(
R
2
,
R
+
)
has a potential well
Ω
≜
int
V
-
1
(
0
)
,
μ
∉
{
μ
j
}
j
=
1
∞
with
{
μ
j
}
j
=
1
∞
being the eigenvalues of
(
-
Δ
,
H
0
1
(
Ω
)
)
. If
μ
<
μ
1
, we obtain the existence and concentrating behaviour of ground state solutions for
λ
sufficiently large under some suitable assumptions on
f
having critical exponential growth at infinity. Let
μ
∈
(
μ
j
0
,
μ
j
0
+
1
)
for some
j
0
∈
N
+
, employing the Morse theory, linking argument and the symmetric mountain-pass theorem, we are concerned with the existence and multiplicity of nontrivial solutions for sufficiently large
λ
when
f
has a subcritical exponential growth at infinity.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Eigenvalues</subject><subject>Existence theorems</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Infinity</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtKA0EQhgdRMD4u4KrBdWu_O-NOBo2CoDCK7pp51CQdJj2xe4KPleARvIsX8CaexI5R3Lmqv6j_ryq-JNmj5IASog8DZYwRTBjHhDIhsF5LBlTKFBPC7tajJpJglTK1mWyFMCVEKC70IHkdgQNftPYZapRNwLvPl7fczjoXlqKa-I_32roxeJQ_hR5m6MH2E5TbscPZpHDjOEN5DzBHV10PrrdFi26hbY9Q5m1vq9gWrkb5oqx--5PHeed-rFkRYCfZaIo2wO5P3U5uTk-uszN8cTk6z44vcMXlsMc1rXQhZHybS9CVrEs11FwrWhNFIQWdDsuSC1qKsmlYqghraiIaphoNshGMbyf7q71z390vIPRm2i28iycN06lWMlVDHl1s5ap8F4KHxsy9nRX-yVBilrDNCraJsM03bKNjiK9CIZqXtP5W_5P6AkNshhE</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Pomponio, Alessio</creator><creator>Shen, Liejun</creator><creator>Zeng, Xiaoyu</creator><creator>Zhang, Yimin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2194-7629</orcidid></search><sort><creationdate>20230601</creationdate><title>Generalized Chern–Simons–Schrödinger System with Sign-Changing Steep Potential Well: Critical and Subcritical Exponential Case</title><author>Pomponio, Alessio ; Shen, Liejun ; Zeng, Xiaoyu ; Zhang, Yimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d1c7a4534735e7c5db6873761d061e9e798bb341b4bff29602fd04f26f7e5f423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Eigenvalues</topic><topic>Existence theorems</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Infinity</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pomponio, Alessio</creatorcontrib><creatorcontrib>Shen, Liejun</creatorcontrib><creatorcontrib>Zeng, Xiaoyu</creatorcontrib><creatorcontrib>Zhang, Yimin</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pomponio, Alessio</au><au>Shen, Liejun</au><au>Zeng, Xiaoyu</au><au>Zhang, Yimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Chern–Simons–Schrödinger System with Sign-Changing Steep Potential Well: Critical and Subcritical Exponential Case</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>33</volume><issue>6</issue><artnum>185</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We consider the following generalized Chern–Simons–Schrödinger system in
R
2
-
Δ
u
+
(
λ
V
(
x
)
-
μ
)
u
+
A
0
u
+
∑
j
=
1
2
A
j
2
u
=
f
(
x
,
u
)
,
∂
1
A
2
-
∂
2
A
1
=
-
1
2
|
u
|
2
,
∂
1
A
1
+
∂
2
A
2
=
0
,
A
1
∂
1
u
+
A
2
∂
2
u
=
0
,
∂
1
A
0
=
A
2
|
u
|
2
,
∂
2
A
0
=
-
A
1
|
u
|
2
,
where
λ
>
0
is a parameter,
V
∈
C
(
R
2
,
R
+
)
has a potential well
Ω
≜
int
V
-
1
(
0
)
,
μ
∉
{
μ
j
}
j
=
1
∞
with
{
μ
j
}
j
=
1
∞
being the eigenvalues of
(
-
Δ
,
H
0
1
(
Ω
)
)
. If
μ
<
μ
1
, we obtain the existence and concentrating behaviour of ground state solutions for
λ
sufficiently large under some suitable assumptions on
f
having critical exponential growth at infinity. Let
μ
∈
(
μ
j
0
,
μ
j
0
+
1
)
for some
j
0
∈
N
+
, employing the Morse theory, linking argument and the symmetric mountain-pass theorem, we are concerned with the existence and multiplicity of nontrivial solutions for sufficiently large
λ
when
f
has a subcritical exponential growth at infinity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-023-01244-7</doi><orcidid>https://orcid.org/0000-0002-2194-7629</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of geometric analysis, 2023-06, Vol.33 (6), Article 185 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2797659683 |
source | Springer Nature |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Differential Geometry Dynamical Systems and Ergodic Theory Eigenvalues Existence theorems Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Infinity Mathematics Mathematics and Statistics |
title | Generalized Chern–Simons–Schrödinger System with Sign-Changing Steep Potential Well: Critical and Subcritical Exponential Case |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Chern%E2%80%93Simons%E2%80%93Schr%C3%B6dinger%20System%20with%20Sign-Changing%20Steep%20Potential%20Well:%20Critical%20and%20Subcritical%20Exponential%20Case&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Pomponio,%20Alessio&rft.date=2023-06-01&rft.volume=33&rft.issue=6&rft.artnum=185&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-023-01244-7&rft_dat=%3Cproquest_cross%3E2797659683%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-d1c7a4534735e7c5db6873761d061e9e798bb341b4bff29602fd04f26f7e5f423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2797659683&rft_id=info:pmid/&rfr_iscdi=true |