Loading…

Generalized Chern–Simons–Schrödinger System with Sign-Changing Steep Potential Well: Critical and Subcritical Exponential Case

We consider the following generalized Chern–Simons–Schrödinger system in R 2 - Δ u + ( λ V ( x ) - μ ) u + A 0 u + ∑ j = 1 2 A j 2 u = f ( x , u ) , ∂ 1 A 2 - ∂ 2 A 1 = - 1 2 | u | 2 , ∂ 1 A 1 + ∂ 2 A 2 = 0 , A 1 ∂ 1 u + A 2 ∂ 2 u = 0 , ∂ 1 A 0 = A 2 | u | 2 , ∂ 2 A 0 = - A 1 | u | 2 , where λ >...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of geometric analysis 2023-06, Vol.33 (6), Article 185
Main Authors: Pomponio, Alessio, Shen, Liejun, Zeng, Xiaoyu, Zhang, Yimin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-d1c7a4534735e7c5db6873761d061e9e798bb341b4bff29602fd04f26f7e5f423
cites cdi_FETCH-LOGICAL-c358t-d1c7a4534735e7c5db6873761d061e9e798bb341b4bff29602fd04f26f7e5f423
container_end_page
container_issue 6
container_start_page
container_title The Journal of geometric analysis
container_volume 33
creator Pomponio, Alessio
Shen, Liejun
Zeng, Xiaoyu
Zhang, Yimin
description We consider the following generalized Chern–Simons–Schrödinger system in R 2 - Δ u + ( λ V ( x ) - μ ) u + A 0 u + ∑ j = 1 2 A j 2 u = f ( x , u ) , ∂ 1 A 2 - ∂ 2 A 1 = - 1 2 | u | 2 , ∂ 1 A 1 + ∂ 2 A 2 = 0 , A 1 ∂ 1 u + A 2 ∂ 2 u = 0 , ∂ 1 A 0 = A 2 | u | 2 , ∂ 2 A 0 = - A 1 | u | 2 , where λ > 0 is a parameter, V ∈ C ( R 2 , R + ) has a potential well Ω ≜ int V - 1 ( 0 ) , μ ∉ { μ j } j = 1 ∞ with { μ j } j = 1 ∞ being the eigenvalues of ( - Δ , H 0 1 ( Ω ) ) . If μ < μ 1 , we obtain the existence and concentrating behaviour of ground state solutions for λ sufficiently large under some suitable assumptions on f having critical exponential growth at infinity. Let μ ∈ ( μ j 0 , μ j 0 + 1 ) for some j 0 ∈ N + , employing the Morse theory, linking argument and the symmetric mountain-pass theorem, we are concerned with the existence and multiplicity of nontrivial solutions for sufficiently large λ when f has a subcritical exponential growth at infinity.
doi_str_mv 10.1007/s12220-023-01244-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2797659683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2797659683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d1c7a4534735e7c5db6873761d061e9e798bb341b4bff29602fd04f26f7e5f423</originalsourceid><addsrcrecordid>eNp9kEtKA0EQhgdRMD4u4KrBdWu_O-NOBo2CoDCK7pp51CQdJj2xe4KPleARvIsX8CaexI5R3Lmqv6j_ryq-JNmj5IASog8DZYwRTBjHhDIhsF5LBlTKFBPC7tajJpJglTK1mWyFMCVEKC70IHkdgQNftPYZapRNwLvPl7fczjoXlqKa-I_32roxeJQ_hR5m6MH2E5TbscPZpHDjOEN5DzBHV10PrrdFi26hbY9Q5m1vq9gWrkb5oqx--5PHeed-rFkRYCfZaIo2wO5P3U5uTk-uszN8cTk6z44vcMXlsMc1rXQhZHybS9CVrEs11FwrWhNFIQWdDsuSC1qKsmlYqghraiIaphoNshGMbyf7q71z390vIPRm2i28iycN06lWMlVDHl1s5ap8F4KHxsy9nRX-yVBilrDNCraJsM03bKNjiK9CIZqXtP5W_5P6AkNshhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797659683</pqid></control><display><type>article</type><title>Generalized Chern–Simons–Schrödinger System with Sign-Changing Steep Potential Well: Critical and Subcritical Exponential Case</title><source>Springer Nature</source><creator>Pomponio, Alessio ; Shen, Liejun ; Zeng, Xiaoyu ; Zhang, Yimin</creator><creatorcontrib>Pomponio, Alessio ; Shen, Liejun ; Zeng, Xiaoyu ; Zhang, Yimin</creatorcontrib><description>We consider the following generalized Chern–Simons–Schrödinger system in R 2 - Δ u + ( λ V ( x ) - μ ) u + A 0 u + ∑ j = 1 2 A j 2 u = f ( x , u ) , ∂ 1 A 2 - ∂ 2 A 1 = - 1 2 | u | 2 , ∂ 1 A 1 + ∂ 2 A 2 = 0 , A 1 ∂ 1 u + A 2 ∂ 2 u = 0 , ∂ 1 A 0 = A 2 | u | 2 , ∂ 2 A 0 = - A 1 | u | 2 , where λ &gt; 0 is a parameter, V ∈ C ( R 2 , R + ) has a potential well Ω ≜ int V - 1 ( 0 ) , μ ∉ { μ j } j = 1 ∞ with { μ j } j = 1 ∞ being the eigenvalues of ( - Δ , H 0 1 ( Ω ) ) . If μ &lt; μ 1 , we obtain the existence and concentrating behaviour of ground state solutions for λ sufficiently large under some suitable assumptions on f having critical exponential growth at infinity. Let μ ∈ ( μ j 0 , μ j 0 + 1 ) for some j 0 ∈ N + , employing the Morse theory, linking argument and the symmetric mountain-pass theorem, we are concerned with the existence and multiplicity of nontrivial solutions for sufficiently large λ when f has a subcritical exponential growth at infinity.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-023-01244-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Eigenvalues ; Existence theorems ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Infinity ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of geometric analysis, 2023-06, Vol.33 (6), Article 185</ispartof><rights>Mathematica Josephina, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-d1c7a4534735e7c5db6873761d061e9e798bb341b4bff29602fd04f26f7e5f423</citedby><cites>FETCH-LOGICAL-c358t-d1c7a4534735e7c5db6873761d061e9e798bb341b4bff29602fd04f26f7e5f423</cites><orcidid>0000-0002-2194-7629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pomponio, Alessio</creatorcontrib><creatorcontrib>Shen, Liejun</creatorcontrib><creatorcontrib>Zeng, Xiaoyu</creatorcontrib><creatorcontrib>Zhang, Yimin</creatorcontrib><title>Generalized Chern–Simons–Schrödinger System with Sign-Changing Steep Potential Well: Critical and Subcritical Exponential Case</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>We consider the following generalized Chern–Simons–Schrödinger system in R 2 - Δ u + ( λ V ( x ) - μ ) u + A 0 u + ∑ j = 1 2 A j 2 u = f ( x , u ) , ∂ 1 A 2 - ∂ 2 A 1 = - 1 2 | u | 2 , ∂ 1 A 1 + ∂ 2 A 2 = 0 , A 1 ∂ 1 u + A 2 ∂ 2 u = 0 , ∂ 1 A 0 = A 2 | u | 2 , ∂ 2 A 0 = - A 1 | u | 2 , where λ &gt; 0 is a parameter, V ∈ C ( R 2 , R + ) has a potential well Ω ≜ int V - 1 ( 0 ) , μ ∉ { μ j } j = 1 ∞ with { μ j } j = 1 ∞ being the eigenvalues of ( - Δ , H 0 1 ( Ω ) ) . If μ &lt; μ 1 , we obtain the existence and concentrating behaviour of ground state solutions for λ sufficiently large under some suitable assumptions on f having critical exponential growth at infinity. Let μ ∈ ( μ j 0 , μ j 0 + 1 ) for some j 0 ∈ N + , employing the Morse theory, linking argument and the symmetric mountain-pass theorem, we are concerned with the existence and multiplicity of nontrivial solutions for sufficiently large λ when f has a subcritical exponential growth at infinity.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Eigenvalues</subject><subject>Existence theorems</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Infinity</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtKA0EQhgdRMD4u4KrBdWu_O-NOBo2CoDCK7pp51CQdJj2xe4KPleARvIsX8CaexI5R3Lmqv6j_ryq-JNmj5IASog8DZYwRTBjHhDIhsF5LBlTKFBPC7tajJpJglTK1mWyFMCVEKC70IHkdgQNftPYZapRNwLvPl7fczjoXlqKa-I_32roxeJQ_hR5m6MH2E5TbscPZpHDjOEN5DzBHV10PrrdFi26hbY9Q5m1vq9gWrkb5oqx--5PHeed-rFkRYCfZaIo2wO5P3U5uTk-uszN8cTk6z44vcMXlsMc1rXQhZHybS9CVrEs11FwrWhNFIQWdDsuSC1qKsmlYqghraiIaphoNshGMbyf7q71z390vIPRm2i28iycN06lWMlVDHl1s5ap8F4KHxsy9nRX-yVBilrDNCraJsM03bKNjiK9CIZqXtP5W_5P6AkNshhE</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Pomponio, Alessio</creator><creator>Shen, Liejun</creator><creator>Zeng, Xiaoyu</creator><creator>Zhang, Yimin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2194-7629</orcidid></search><sort><creationdate>20230601</creationdate><title>Generalized Chern–Simons–Schrödinger System with Sign-Changing Steep Potential Well: Critical and Subcritical Exponential Case</title><author>Pomponio, Alessio ; Shen, Liejun ; Zeng, Xiaoyu ; Zhang, Yimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d1c7a4534735e7c5db6873761d061e9e798bb341b4bff29602fd04f26f7e5f423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Eigenvalues</topic><topic>Existence theorems</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Infinity</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pomponio, Alessio</creatorcontrib><creatorcontrib>Shen, Liejun</creatorcontrib><creatorcontrib>Zeng, Xiaoyu</creatorcontrib><creatorcontrib>Zhang, Yimin</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pomponio, Alessio</au><au>Shen, Liejun</au><au>Zeng, Xiaoyu</au><au>Zhang, Yimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Chern–Simons–Schrödinger System with Sign-Changing Steep Potential Well: Critical and Subcritical Exponential Case</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>33</volume><issue>6</issue><artnum>185</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We consider the following generalized Chern–Simons–Schrödinger system in R 2 - Δ u + ( λ V ( x ) - μ ) u + A 0 u + ∑ j = 1 2 A j 2 u = f ( x , u ) , ∂ 1 A 2 - ∂ 2 A 1 = - 1 2 | u | 2 , ∂ 1 A 1 + ∂ 2 A 2 = 0 , A 1 ∂ 1 u + A 2 ∂ 2 u = 0 , ∂ 1 A 0 = A 2 | u | 2 , ∂ 2 A 0 = - A 1 | u | 2 , where λ &gt; 0 is a parameter, V ∈ C ( R 2 , R + ) has a potential well Ω ≜ int V - 1 ( 0 ) , μ ∉ { μ j } j = 1 ∞ with { μ j } j = 1 ∞ being the eigenvalues of ( - Δ , H 0 1 ( Ω ) ) . If μ &lt; μ 1 , we obtain the existence and concentrating behaviour of ground state solutions for λ sufficiently large under some suitable assumptions on f having critical exponential growth at infinity. Let μ ∈ ( μ j 0 , μ j 0 + 1 ) for some j 0 ∈ N + , employing the Morse theory, linking argument and the symmetric mountain-pass theorem, we are concerned with the existence and multiplicity of nontrivial solutions for sufficiently large λ when f has a subcritical exponential growth at infinity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-023-01244-7</doi><orcidid>https://orcid.org/0000-0002-2194-7629</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of geometric analysis, 2023-06, Vol.33 (6), Article 185
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2797659683
source Springer Nature
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Eigenvalues
Existence theorems
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Infinity
Mathematics
Mathematics and Statistics
title Generalized Chern–Simons–Schrödinger System with Sign-Changing Steep Potential Well: Critical and Subcritical Exponential Case
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Chern%E2%80%93Simons%E2%80%93Schr%C3%B6dinger%20System%20with%20Sign-Changing%20Steep%20Potential%20Well:%20Critical%20and%20Subcritical%20Exponential%20Case&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Pomponio,%20Alessio&rft.date=2023-06-01&rft.volume=33&rft.issue=6&rft.artnum=185&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-023-01244-7&rft_dat=%3Cproquest_cross%3E2797659683%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-d1c7a4534735e7c5db6873761d061e9e798bb341b4bff29602fd04f26f7e5f423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2797659683&rft_id=info:pmid/&rfr_iscdi=true