Loading…

Advanced Modeling of Lubricated Interfaces in General Curvilinear Grids

Tackling fluid-flow problems involving intricate surface geometries has been the catalyst for a plethora of numerical investigations aimed at accommodating curved complex boundaries. An example is the application of body-fitted curvilinear coordinate transformation, where the one-to-one corresponden...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-04
Main Authors: Ardah, Suhaib, Profito, Francisco J, Reddyhoff, Tom, Dini, Daniele
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ardah, Suhaib
Profito, Francisco J
Reddyhoff, Tom
Dini, Daniele
description Tackling fluid-flow problems involving intricate surface geometries has been the catalyst for a plethora of numerical investigations aimed at accommodating curved complex boundaries. An example is the application of body-fitted curvilinear coordinate transformation, where the one-to-one correspondence of grid points from the physical to the computational domain is achieved. In lubricated interfaces, such conversion is challenging due to the complex governing equations in the mapped-grid, the numerical instabilities exhibited by their non-linearities and the severity of operating conditions. The present contribution proposes a Reynolds-based, finite volume fluid-structure interaction (FSI) framework for solving thermal elastohydrodynamic lubrication (TEHL) problems mapped onto non-orthogonal curvilinear grids in the computational domain. We demonstrate how the strong conservation form of the pertinent governing equations can be expressed in three-dimensional curvilinear grids and discretised using finite volume method to ensure fluid-flow conservation and enforce mass-conserving cavitation conditions. Numerical and experimental benchmarks showcase the robustness and versatility of the proposed framework to simulate a diverse range of lubrication problems, hence achieving a predictive computational tool that would enable a shift towards tribology-aware design.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2799285052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799285052</sourcerecordid><originalsourceid>FETCH-proquest_journals_27992850523</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHguxI2x7VGKVkFv3ktstpJSEt00fb89-ABPAzOzYAlIucuKPcCKpSH0Qgg45KCUTFh9NJN2LRp-9wYH617cd_wWn2RbPc766kakTrcYuHW8RoekB15Fmux8oyZekzVhw5adHgKmP67Z9nx6VJfsTf4TMYxN7yO5OTWQlyUUSiiQ_11f0Qk7XQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799285052</pqid></control><display><type>article</type><title>Advanced Modeling of Lubricated Interfaces in General Curvilinear Grids</title><source>Publicly Available Content Database</source><creator>Ardah, Suhaib ; Profito, Francisco J ; Reddyhoff, Tom ; Dini, Daniele</creator><creatorcontrib>Ardah, Suhaib ; Profito, Francisco J ; Reddyhoff, Tom ; Dini, Daniele</creatorcontrib><description>Tackling fluid-flow problems involving intricate surface geometries has been the catalyst for a plethora of numerical investigations aimed at accommodating curved complex boundaries. An example is the application of body-fitted curvilinear coordinate transformation, where the one-to-one correspondence of grid points from the physical to the computational domain is achieved. In lubricated interfaces, such conversion is challenging due to the complex governing equations in the mapped-grid, the numerical instabilities exhibited by their non-linearities and the severity of operating conditions. The present contribution proposes a Reynolds-based, finite volume fluid-structure interaction (FSI) framework for solving thermal elastohydrodynamic lubrication (TEHL) problems mapped onto non-orthogonal curvilinear grids in the computational domain. We demonstrate how the strong conservation form of the pertinent governing equations can be expressed in three-dimensional curvilinear grids and discretised using finite volume method to ensure fluid-flow conservation and enforce mass-conserving cavitation conditions. Numerical and experimental benchmarks showcase the robustness and versatility of the proposed framework to simulate a diverse range of lubrication problems, hence achieving a predictive computational tool that would enable a shift towards tribology-aware design.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cavitation ; Coordinate transformations ; Domains ; Elastohydrodynamic lubrication ; Finite volume method ; Fluid flow ; Fluid-structure interaction ; Lubrication ; Robustness (mathematics) ; Software ; Spherical coordinates ; Tribology</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2799285052?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Ardah, Suhaib</creatorcontrib><creatorcontrib>Profito, Francisco J</creatorcontrib><creatorcontrib>Reddyhoff, Tom</creatorcontrib><creatorcontrib>Dini, Daniele</creatorcontrib><title>Advanced Modeling of Lubricated Interfaces in General Curvilinear Grids</title><title>arXiv.org</title><description>Tackling fluid-flow problems involving intricate surface geometries has been the catalyst for a plethora of numerical investigations aimed at accommodating curved complex boundaries. An example is the application of body-fitted curvilinear coordinate transformation, where the one-to-one correspondence of grid points from the physical to the computational domain is achieved. In lubricated interfaces, such conversion is challenging due to the complex governing equations in the mapped-grid, the numerical instabilities exhibited by their non-linearities and the severity of operating conditions. The present contribution proposes a Reynolds-based, finite volume fluid-structure interaction (FSI) framework for solving thermal elastohydrodynamic lubrication (TEHL) problems mapped onto non-orthogonal curvilinear grids in the computational domain. We demonstrate how the strong conservation form of the pertinent governing equations can be expressed in three-dimensional curvilinear grids and discretised using finite volume method to ensure fluid-flow conservation and enforce mass-conserving cavitation conditions. Numerical and experimental benchmarks showcase the robustness and versatility of the proposed framework to simulate a diverse range of lubrication problems, hence achieving a predictive computational tool that would enable a shift towards tribology-aware design.</description><subject>Cavitation</subject><subject>Coordinate transformations</subject><subject>Domains</subject><subject>Elastohydrodynamic lubrication</subject><subject>Finite volume method</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>Lubrication</subject><subject>Robustness (mathematics)</subject><subject>Software</subject><subject>Spherical coordinates</subject><subject>Tribology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHguxI2x7VGKVkFv3ktstpJSEt00fb89-ABPAzOzYAlIucuKPcCKpSH0Qgg45KCUTFh9NJN2LRp-9wYH617cd_wWn2RbPc766kakTrcYuHW8RoekB15Fmux8oyZekzVhw5adHgKmP67Z9nx6VJfsTf4TMYxN7yO5OTWQlyUUSiiQ_11f0Qk7XQ</recordid><startdate>20230410</startdate><enddate>20230410</enddate><creator>Ardah, Suhaib</creator><creator>Profito, Francisco J</creator><creator>Reddyhoff, Tom</creator><creator>Dini, Daniele</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230410</creationdate><title>Advanced Modeling of Lubricated Interfaces in General Curvilinear Grids</title><author>Ardah, Suhaib ; Profito, Francisco J ; Reddyhoff, Tom ; Dini, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27992850523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cavitation</topic><topic>Coordinate transformations</topic><topic>Domains</topic><topic>Elastohydrodynamic lubrication</topic><topic>Finite volume method</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>Lubrication</topic><topic>Robustness (mathematics)</topic><topic>Software</topic><topic>Spherical coordinates</topic><topic>Tribology</topic><toplevel>online_resources</toplevel><creatorcontrib>Ardah, Suhaib</creatorcontrib><creatorcontrib>Profito, Francisco J</creatorcontrib><creatorcontrib>Reddyhoff, Tom</creatorcontrib><creatorcontrib>Dini, Daniele</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ardah, Suhaib</au><au>Profito, Francisco J</au><au>Reddyhoff, Tom</au><au>Dini, Daniele</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Advanced Modeling of Lubricated Interfaces in General Curvilinear Grids</atitle><jtitle>arXiv.org</jtitle><date>2023-04-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Tackling fluid-flow problems involving intricate surface geometries has been the catalyst for a plethora of numerical investigations aimed at accommodating curved complex boundaries. An example is the application of body-fitted curvilinear coordinate transformation, where the one-to-one correspondence of grid points from the physical to the computational domain is achieved. In lubricated interfaces, such conversion is challenging due to the complex governing equations in the mapped-grid, the numerical instabilities exhibited by their non-linearities and the severity of operating conditions. The present contribution proposes a Reynolds-based, finite volume fluid-structure interaction (FSI) framework for solving thermal elastohydrodynamic lubrication (TEHL) problems mapped onto non-orthogonal curvilinear grids in the computational domain. We demonstrate how the strong conservation form of the pertinent governing equations can be expressed in three-dimensional curvilinear grids and discretised using finite volume method to ensure fluid-flow conservation and enforce mass-conserving cavitation conditions. Numerical and experimental benchmarks showcase the robustness and versatility of the proposed framework to simulate a diverse range of lubrication problems, hence achieving a predictive computational tool that would enable a shift towards tribology-aware design.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2799285052
source Publicly Available Content Database
subjects Cavitation
Coordinate transformations
Domains
Elastohydrodynamic lubrication
Finite volume method
Fluid flow
Fluid-structure interaction
Lubrication
Robustness (mathematics)
Software
Spherical coordinates
Tribology
title Advanced Modeling of Lubricated Interfaces in General Curvilinear Grids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Advanced%20Modeling%20of%20Lubricated%20Interfaces%20in%20General%20Curvilinear%20Grids&rft.jtitle=arXiv.org&rft.au=Ardah,%20Suhaib&rft.date=2023-04-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2799285052%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27992850523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2799285052&rft_id=info:pmid/&rfr_iscdi=true