Loading…
Machine learning one-dimensional spinless trapped fermionic systems with neural-network quantum states
We compute the ground-state properties of fully polarized, trapped, one-dimensional fermionic systems interacting through a gaussian potential. We use an antisymmetric artificial neural network, or neural quantum state, as an ansatz for the wavefunction and use machine learning techniques to variati...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Keeble, J W T Drissi, M Rojo-Francàs, A Juliá-Díaz, B Rios, A |
description | We compute the ground-state properties of fully polarized, trapped, one-dimensional fermionic systems interacting through a gaussian potential. We use an antisymmetric artificial neural network, or neural quantum state, as an ansatz for the wavefunction and use machine learning techniques to variationally minimize the energy of systems from 2 to 6 particles. We provide extensive benchmarks with other many-body methods, including exact diagonalisation and the Hartree-Fock approximation. The neural quantum state provides the best energies across a wide range of interaction strengths. We find very different ground states depending on the sign of the interaction. In the non-perturbative repulsive regime, the system asymptotically reaches crystalline order. In contrast, the strongly attractive regime shows signs of bosonization. The neural quantum state continuously learns these different phases with an almost constant number of parameters and a very modest increase in computational time with the number of particles. |
doi_str_mv | 10.48550/arxiv.2304.04725 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2799917817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799917817</sourcerecordid><originalsourceid>FETCH-LOGICAL-a955-dd3eea6f9601f24f4865725133baa57e69c1f4b35e2865d0503175634116c10d3</originalsourceid><addsrcrecordid>eNotz0tLw0AUBeBBECy1P8DdgOvUeSdZSvEFipvuy21yx05NJuncidV_b0BXZ_HB4RzGbqRYm8pacQfpO3ytlRZmLUyp7AVbKK1lURmlrtiK6CiEUG4WqxfMv0FzCBF5h5BiiB98iFi0ocdIYYjQcRpD7JCI5wTjiC33mPqZQsPphzL2xM8hH3jEKUFXRMznIX3y0wQxTz2nDBnpml166AhX_7lk28eH7ea5eH1_etncvxZQW1u0rUYE52snpFfGm8rZeafUeg9gS3R1I73Za4tqllZYoWVpnTZSukaKVi_Z7V_tmIbThJR3x2FK8wvaqbKua1lWstS_gMhZcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799917817</pqid></control><display><type>article</type><title>Machine learning one-dimensional spinless trapped fermionic systems with neural-network quantum states</title><source>Publicly Available Content Database</source><creator>Keeble, J W T ; Drissi, M ; Rojo-Francàs, A ; Juliá-Díaz, B ; Rios, A</creator><creatorcontrib>Keeble, J W T ; Drissi, M ; Rojo-Francàs, A ; Juliá-Díaz, B ; Rios, A</creatorcontrib><description>We compute the ground-state properties of fully polarized, trapped, one-dimensional fermionic systems interacting through a gaussian potential. We use an antisymmetric artificial neural network, or neural quantum state, as an ansatz for the wavefunction and use machine learning techniques to variationally minimize the energy of systems from 2 to 6 particles. We provide extensive benchmarks with other many-body methods, including exact diagonalisation and the Hartree-Fock approximation. The neural quantum state provides the best energies across a wide range of interaction strengths. We find very different ground states depending on the sign of the interaction. In the non-perturbative repulsive regime, the system asymptotically reaches crystalline order. In contrast, the strongly attractive regime shows signs of bosonization. The neural quantum state continuously learns these different phases with an almost constant number of parameters and a very modest increase in computational time with the number of particles.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2304.04725</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Computing time ; Hartree approximation ; Machine learning ; Wave functions</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2799917817?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Keeble, J W T</creatorcontrib><creatorcontrib>Drissi, M</creatorcontrib><creatorcontrib>Rojo-Francàs, A</creatorcontrib><creatorcontrib>Juliá-Díaz, B</creatorcontrib><creatorcontrib>Rios, A</creatorcontrib><title>Machine learning one-dimensional spinless trapped fermionic systems with neural-network quantum states</title><title>arXiv.org</title><description>We compute the ground-state properties of fully polarized, trapped, one-dimensional fermionic systems interacting through a gaussian potential. We use an antisymmetric artificial neural network, or neural quantum state, as an ansatz for the wavefunction and use machine learning techniques to variationally minimize the energy of systems from 2 to 6 particles. We provide extensive benchmarks with other many-body methods, including exact diagonalisation and the Hartree-Fock approximation. The neural quantum state provides the best energies across a wide range of interaction strengths. We find very different ground states depending on the sign of the interaction. In the non-perturbative repulsive regime, the system asymptotically reaches crystalline order. In contrast, the strongly attractive regime shows signs of bosonization. The neural quantum state continuously learns these different phases with an almost constant number of parameters and a very modest increase in computational time with the number of particles.</description><subject>Artificial neural networks</subject><subject>Computing time</subject><subject>Hartree approximation</subject><subject>Machine learning</subject><subject>Wave functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotz0tLw0AUBeBBECy1P8DdgOvUeSdZSvEFipvuy21yx05NJuncidV_b0BXZ_HB4RzGbqRYm8pacQfpO3ytlRZmLUyp7AVbKK1lURmlrtiK6CiEUG4WqxfMv0FzCBF5h5BiiB98iFi0ocdIYYjQcRpD7JCI5wTjiC33mPqZQsPphzL2xM8hH3jEKUFXRMznIX3y0wQxTz2nDBnpml166AhX_7lk28eH7ea5eH1_etncvxZQW1u0rUYE52snpFfGm8rZeafUeg9gS3R1I73Za4tqllZYoWVpnTZSukaKVi_Z7V_tmIbThJR3x2FK8wvaqbKua1lWstS_gMhZcQ</recordid><startdate>20240208</startdate><enddate>20240208</enddate><creator>Keeble, J W T</creator><creator>Drissi, M</creator><creator>Rojo-Francàs, A</creator><creator>Juliá-Díaz, B</creator><creator>Rios, A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240208</creationdate><title>Machine learning one-dimensional spinless trapped fermionic systems with neural-network quantum states</title><author>Keeble, J W T ; Drissi, M ; Rojo-Francàs, A ; Juliá-Díaz, B ; Rios, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a955-dd3eea6f9601f24f4865725133baa57e69c1f4b35e2865d0503175634116c10d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Computing time</topic><topic>Hartree approximation</topic><topic>Machine learning</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Keeble, J W T</creatorcontrib><creatorcontrib>Drissi, M</creatorcontrib><creatorcontrib>Rojo-Francàs, A</creatorcontrib><creatorcontrib>Juliá-Díaz, B</creatorcontrib><creatorcontrib>Rios, A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keeble, J W T</au><au>Drissi, M</au><au>Rojo-Francàs, A</au><au>Juliá-Díaz, B</au><au>Rios, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning one-dimensional spinless trapped fermionic systems with neural-network quantum states</atitle><jtitle>arXiv.org</jtitle><date>2024-02-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We compute the ground-state properties of fully polarized, trapped, one-dimensional fermionic systems interacting through a gaussian potential. We use an antisymmetric artificial neural network, or neural quantum state, as an ansatz for the wavefunction and use machine learning techniques to variationally minimize the energy of systems from 2 to 6 particles. We provide extensive benchmarks with other many-body methods, including exact diagonalisation and the Hartree-Fock approximation. The neural quantum state provides the best energies across a wide range of interaction strengths. We find very different ground states depending on the sign of the interaction. In the non-perturbative repulsive regime, the system asymptotically reaches crystalline order. In contrast, the strongly attractive regime shows signs of bosonization. The neural quantum state continuously learns these different phases with an almost constant number of parameters and a very modest increase in computational time with the number of particles.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2304.04725</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2799917817 |
source | Publicly Available Content Database |
subjects | Artificial neural networks Computing time Hartree approximation Machine learning Wave functions |
title | Machine learning one-dimensional spinless trapped fermionic systems with neural-network quantum states |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20one-dimensional%20spinless%20trapped%20fermionic%20systems%20with%20neural-network%20quantum%20states&rft.jtitle=arXiv.org&rft.au=Keeble,%20J%20W%20T&rft.date=2024-02-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2304.04725&rft_dat=%3Cproquest%3E2799917817%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a955-dd3eea6f9601f24f4865725133baa57e69c1f4b35e2865d0503175634116c10d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2799917817&rft_id=info:pmid/&rfr_iscdi=true |