Loading…

Laser‐Induced Transient Self‐Organization of TiNx Nano‐Filament Percolated Networks for High Performance Surface‐Mountable Filter Capacitors

Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of availabl...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2023-04, Vol.35 (15), p.n/a
Main Authors: Wang, Fangcheng, Guo, Zhenbin, Wang, Zhiyuan, Zhu, Haojie, Zhao, Guangyao, Chen, Chaojie, Liu, Mingjie, Sun, Rong, Kang, Feiyu, Wong, Ching‐Ping, Yang, Cheng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 15
container_start_page
container_title Advanced materials (Weinheim)
container_volume 35
creator Wang, Fangcheng
Guo, Zhenbin
Wang, Zhiyuan
Zhu, Haojie
Zhao, Guangyao
Chen, Chaojie
Liu, Mingjie
Sun, Rong
Kang, Feiyu
Wong, Ching‐Ping
Yang, Cheng
description Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of available electrode materials, the capacitive performance of reported MSCs drops sharply under high‐frequency alternating current. Herein, we present a unique laser‐induced transient self‐organization strategy, which synergizes pulsed laser energy and multi‐physical field controlled coalescence processes, leading to the rapid and controllable preparation of titanium nitride ultrafine nano‐filaments (diameter ≈3–5 nm) networks. Their chaotic fractal nanoporous structure, superior specific surface area, and excellent conductivity render these nanostructures promising candidates for FCs. Surface‐mounted filter capacitors based on this electrode material exhibit ultra‐long cycle‐life (2 000 000 cycles) with record ultrahigh volumetric energy density of 9.17 mWh cm−3 at 120 Hz in aqueous electrolyte, displaying advantages in function, size, and integrability compared with the state‐of‐the‐art aluminum electrolytic capacitors. The method here provides a versatile toolbox for designing novel nanostructures with intriguing characteristics and insights for developing advanced and miniaturized filter and power devices. Preparing low‐dimensional conductive nitride‐based hierarchical structures with sub‐10 nm geometric characteristics has been a major challenge. A unique laser‐induced transient self‐organization strategy to rapidly and controllably fabricate ultrafine (diameter: 3–5 nm) TiNx nano‐filament percolated chaotic fractal networks is presented. The prepared surface‐mountable filter capacitors achieve a record‐breaking volumetric energy density of 9.17 mWh cm−3 at 120 Hz in an aqueous electrolyte.
doi_str_mv 10.1002/adma.202210038
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2799978364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799978364</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2668-7b4cede7bb4a6fee38a54f35a0e75072708e70f29002d6a3123d10b61e5e08193</originalsourceid><addsrcrecordid>eNo9kMtu2zAQRYkiBeo8tlkT6FrpkJQocWm4dRLAjwB218JIGrlMZdKlJCTpqp_QRb4wX1IaLrKaGdw7dwaHsWsBNwJAfsFmjzcSpIyTKj6wicikSFIw2RmbgFFZYnRafGLnff8IAEaDnrDXBfYU3v78vXfNWFPDtwFdb8kNfENdG4V12KGzv3Gw3nHf8q1dPfMVOh-1ue1wf_Q-UKh9h0MMWNHw5MPPnrc-8Du7-3EUY79HVxPfjKHFmuLu0o9uwKojHlMGCnyGB6zt4EN_yT622PV09b9esO_zb9vZXbJY397PpovkILUukrxK48eUV1WKuiVSBWZpqzIEyjPIZQ4F5dBKE-k0GpWQqhFQaUEZQSGMumCfT7mH4H-N1A_lox-DiydLmRtj8kLpNLrMyfVkO3opD8HuMbyUAsoj9vKIvXzHXk6_Lqfvk_oH6ix-4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799978364</pqid></control><display><type>article</type><title>Laser‐Induced Transient Self‐Organization of TiNx Nano‐Filament Percolated Networks for High Performance Surface‐Mountable Filter Capacitors</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Fangcheng ; Guo, Zhenbin ; Wang, Zhiyuan ; Zhu, Haojie ; Zhao, Guangyao ; Chen, Chaojie ; Liu, Mingjie ; Sun, Rong ; Kang, Feiyu ; Wong, Ching‐Ping ; Yang, Cheng</creator><creatorcontrib>Wang, Fangcheng ; Guo, Zhenbin ; Wang, Zhiyuan ; Zhu, Haojie ; Zhao, Guangyao ; Chen, Chaojie ; Liu, Mingjie ; Sun, Rong ; Kang, Feiyu ; Wong, Ching‐Ping ; Yang, Cheng</creatorcontrib><description>Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of available electrode materials, the capacitive performance of reported MSCs drops sharply under high‐frequency alternating current. Herein, we present a unique laser‐induced transient self‐organization strategy, which synergizes pulsed laser energy and multi‐physical field controlled coalescence processes, leading to the rapid and controllable preparation of titanium nitride ultrafine nano‐filaments (diameter ≈3–5 nm) networks. Their chaotic fractal nanoporous structure, superior specific surface area, and excellent conductivity render these nanostructures promising candidates for FCs. Surface‐mounted filter capacitors based on this electrode material exhibit ultra‐long cycle‐life (2 000 000 cycles) with record ultrahigh volumetric energy density of 9.17 mWh cm−3 at 120 Hz in aqueous electrolyte, displaying advantages in function, size, and integrability compared with the state‐of‐the‐art aluminum electrolytic capacitors. The method here provides a versatile toolbox for designing novel nanostructures with intriguing characteristics and insights for developing advanced and miniaturized filter and power devices. Preparing low‐dimensional conductive nitride‐based hierarchical structures with sub‐10 nm geometric characteristics has been a major challenge. A unique laser‐induced transient self‐organization strategy to rapidly and controllably fabricate ultrafine (diameter: 3–5 nm) TiNx nano‐filament percolated chaotic fractal networks is presented. The prepared surface‐mountable filter capacitors achieve a record‐breaking volumetric energy density of 9.17 mWh cm−3 at 120 Hz in an aqueous electrolyte.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202210038</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Aqueous electrolytes ; Controllability ; Digital electronics ; Electrode materials ; Electrodes ; Electrolytic capacitors ; Electronic devices ; Filaments ; Lasers ; laser‐induced transient self‐organization ; Materials science ; Nanostructure ; Pulsed lasers ; surface‐mountable filter capacitors ; TiN x nanonetworks ; Titanium nitride ; ultrafine nano‐filaments ; Ultrafines</subject><ispartof>Advanced materials (Weinheim), 2023-04, Vol.35 (15), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2618-4787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Fangcheng</creatorcontrib><creatorcontrib>Guo, Zhenbin</creatorcontrib><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Zhu, Haojie</creatorcontrib><creatorcontrib>Zhao, Guangyao</creatorcontrib><creatorcontrib>Chen, Chaojie</creatorcontrib><creatorcontrib>Liu, Mingjie</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Wong, Ching‐Ping</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><title>Laser‐Induced Transient Self‐Organization of TiNx Nano‐Filament Percolated Networks for High Performance Surface‐Mountable Filter Capacitors</title><title>Advanced materials (Weinheim)</title><description>Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of available electrode materials, the capacitive performance of reported MSCs drops sharply under high‐frequency alternating current. Herein, we present a unique laser‐induced transient self‐organization strategy, which synergizes pulsed laser energy and multi‐physical field controlled coalescence processes, leading to the rapid and controllable preparation of titanium nitride ultrafine nano‐filaments (diameter ≈3–5 nm) networks. Their chaotic fractal nanoporous structure, superior specific surface area, and excellent conductivity render these nanostructures promising candidates for FCs. Surface‐mounted filter capacitors based on this electrode material exhibit ultra‐long cycle‐life (2 000 000 cycles) with record ultrahigh volumetric energy density of 9.17 mWh cm−3 at 120 Hz in aqueous electrolyte, displaying advantages in function, size, and integrability compared with the state‐of‐the‐art aluminum electrolytic capacitors. The method here provides a versatile toolbox for designing novel nanostructures with intriguing characteristics and insights for developing advanced and miniaturized filter and power devices. Preparing low‐dimensional conductive nitride‐based hierarchical structures with sub‐10 nm geometric characteristics has been a major challenge. A unique laser‐induced transient self‐organization strategy to rapidly and controllably fabricate ultrafine (diameter: 3–5 nm) TiNx nano‐filament percolated chaotic fractal networks is presented. The prepared surface‐mountable filter capacitors achieve a record‐breaking volumetric energy density of 9.17 mWh cm−3 at 120 Hz in an aqueous electrolyte.</description><subject>Aluminum</subject><subject>Aqueous electrolytes</subject><subject>Controllability</subject><subject>Digital electronics</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytic capacitors</subject><subject>Electronic devices</subject><subject>Filaments</subject><subject>Lasers</subject><subject>laser‐induced transient self‐organization</subject><subject>Materials science</subject><subject>Nanostructure</subject><subject>Pulsed lasers</subject><subject>surface‐mountable filter capacitors</subject><subject>TiN x nanonetworks</subject><subject>Titanium nitride</subject><subject>ultrafine nano‐filaments</subject><subject>Ultrafines</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtu2zAQRYkiBeo8tlkT6FrpkJQocWm4dRLAjwB218JIGrlMZdKlJCTpqp_QRb4wX1IaLrKaGdw7dwaHsWsBNwJAfsFmjzcSpIyTKj6wicikSFIw2RmbgFFZYnRafGLnff8IAEaDnrDXBfYU3v78vXfNWFPDtwFdb8kNfENdG4V12KGzv3Gw3nHf8q1dPfMVOh-1ue1wf_Q-UKh9h0MMWNHw5MPPnrc-8Du7-3EUY79HVxPfjKHFmuLu0o9uwKojHlMGCnyGB6zt4EN_yT622PV09b9esO_zb9vZXbJY397PpovkILUukrxK48eUV1WKuiVSBWZpqzIEyjPIZQ4F5dBKE-k0GpWQqhFQaUEZQSGMumCfT7mH4H-N1A_lox-DiydLmRtj8kLpNLrMyfVkO3opD8HuMbyUAsoj9vKIvXzHXk6_Lqfvk_oH6ix-4g</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Wang, Fangcheng</creator><creator>Guo, Zhenbin</creator><creator>Wang, Zhiyuan</creator><creator>Zhu, Haojie</creator><creator>Zhao, Guangyao</creator><creator>Chen, Chaojie</creator><creator>Liu, Mingjie</creator><creator>Sun, Rong</creator><creator>Kang, Feiyu</creator><creator>Wong, Ching‐Ping</creator><creator>Yang, Cheng</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2618-4787</orcidid></search><sort><creationdate>20230401</creationdate><title>Laser‐Induced Transient Self‐Organization of TiNx Nano‐Filament Percolated Networks for High Performance Surface‐Mountable Filter Capacitors</title><author>Wang, Fangcheng ; Guo, Zhenbin ; Wang, Zhiyuan ; Zhu, Haojie ; Zhao, Guangyao ; Chen, Chaojie ; Liu, Mingjie ; Sun, Rong ; Kang, Feiyu ; Wong, Ching‐Ping ; Yang, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2668-7b4cede7bb4a6fee38a54f35a0e75072708e70f29002d6a3123d10b61e5e08193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Aqueous electrolytes</topic><topic>Controllability</topic><topic>Digital electronics</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytic capacitors</topic><topic>Electronic devices</topic><topic>Filaments</topic><topic>Lasers</topic><topic>laser‐induced transient self‐organization</topic><topic>Materials science</topic><topic>Nanostructure</topic><topic>Pulsed lasers</topic><topic>surface‐mountable filter capacitors</topic><topic>TiN x nanonetworks</topic><topic>Titanium nitride</topic><topic>ultrafine nano‐filaments</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fangcheng</creatorcontrib><creatorcontrib>Guo, Zhenbin</creatorcontrib><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Zhu, Haojie</creatorcontrib><creatorcontrib>Zhao, Guangyao</creatorcontrib><creatorcontrib>Chen, Chaojie</creatorcontrib><creatorcontrib>Liu, Mingjie</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Wong, Ching‐Ping</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fangcheng</au><au>Guo, Zhenbin</au><au>Wang, Zhiyuan</au><au>Zhu, Haojie</au><au>Zhao, Guangyao</au><au>Chen, Chaojie</au><au>Liu, Mingjie</au><au>Sun, Rong</au><au>Kang, Feiyu</au><au>Wong, Ching‐Ping</au><au>Yang, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser‐Induced Transient Self‐Organization of TiNx Nano‐Filament Percolated Networks for High Performance Surface‐Mountable Filter Capacitors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>35</volume><issue>15</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of available electrode materials, the capacitive performance of reported MSCs drops sharply under high‐frequency alternating current. Herein, we present a unique laser‐induced transient self‐organization strategy, which synergizes pulsed laser energy and multi‐physical field controlled coalescence processes, leading to the rapid and controllable preparation of titanium nitride ultrafine nano‐filaments (diameter ≈3–5 nm) networks. Their chaotic fractal nanoporous structure, superior specific surface area, and excellent conductivity render these nanostructures promising candidates for FCs. Surface‐mounted filter capacitors based on this electrode material exhibit ultra‐long cycle‐life (2 000 000 cycles) with record ultrahigh volumetric energy density of 9.17 mWh cm−3 at 120 Hz in aqueous electrolyte, displaying advantages in function, size, and integrability compared with the state‐of‐the‐art aluminum electrolytic capacitors. The method here provides a versatile toolbox for designing novel nanostructures with intriguing characteristics and insights for developing advanced and miniaturized filter and power devices. Preparing low‐dimensional conductive nitride‐based hierarchical structures with sub‐10 nm geometric characteristics has been a major challenge. A unique laser‐induced transient self‐organization strategy to rapidly and controllably fabricate ultrafine (diameter: 3–5 nm) TiNx nano‐filament percolated chaotic fractal networks is presented. The prepared surface‐mountable filter capacitors achieve a record‐breaking volumetric energy density of 9.17 mWh cm−3 at 120 Hz in an aqueous electrolyte.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202210038</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2618-4787</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-04, Vol.35 (15), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2799978364
source Wiley-Blackwell Read & Publish Collection
subjects Aluminum
Aqueous electrolytes
Controllability
Digital electronics
Electrode materials
Electrodes
Electrolytic capacitors
Electronic devices
Filaments
Lasers
laser‐induced transient self‐organization
Materials science
Nanostructure
Pulsed lasers
surface‐mountable filter capacitors
TiN x nanonetworks
Titanium nitride
ultrafine nano‐filaments
Ultrafines
title Laser‐Induced Transient Self‐Organization of TiNx Nano‐Filament Percolated Networks for High Performance Surface‐Mountable Filter Capacitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%E2%80%90Induced%20Transient%20Self%E2%80%90Organization%20of%20TiNx%20Nano%E2%80%90Filament%20Percolated%20Networks%20for%20High%20Performance%20Surface%E2%80%90Mountable%20Filter%20Capacitors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Fangcheng&rft.date=2023-04-01&rft.volume=35&rft.issue=15&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202210038&rft_dat=%3Cproquest_wiley%3E2799978364%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2668-7b4cede7bb4a6fee38a54f35a0e75072708e70f29002d6a3123d10b61e5e08193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2799978364&rft_id=info:pmid/&rfr_iscdi=true