Loading…
Laser‐Induced Transient Self‐Organization of TiNx Nano‐Filament Percolated Networks for High Performance Surface‐Mountable Filter Capacitors
Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of availabl...
Saved in:
Published in: | Advanced materials (Weinheim) 2023-04, Vol.35 (15), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 15 |
container_start_page | |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Wang, Fangcheng Guo, Zhenbin Wang, Zhiyuan Zhu, Haojie Zhao, Guangyao Chen, Chaojie Liu, Mingjie Sun, Rong Kang, Feiyu Wong, Ching‐Ping Yang, Cheng |
description | Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of available electrode materials, the capacitive performance of reported MSCs drops sharply under high‐frequency alternating current. Herein, we present a unique laser‐induced transient self‐organization strategy, which synergizes pulsed laser energy and multi‐physical field controlled coalescence processes, leading to the rapid and controllable preparation of titanium nitride ultrafine nano‐filaments (diameter ≈3–5 nm) networks. Their chaotic fractal nanoporous structure, superior specific surface area, and excellent conductivity render these nanostructures promising candidates for FCs. Surface‐mounted filter capacitors based on this electrode material exhibit ultra‐long cycle‐life (2 000 000 cycles) with record ultrahigh volumetric energy density of 9.17 mWh cm−3 at 120 Hz in aqueous electrolyte, displaying advantages in function, size, and integrability compared with the state‐of‐the‐art aluminum electrolytic capacitors. The method here provides a versatile toolbox for designing novel nanostructures with intriguing characteristics and insights for developing advanced and miniaturized filter and power devices.
Preparing low‐dimensional conductive nitride‐based hierarchical structures with sub‐10 nm geometric characteristics has been a major challenge. A unique laser‐induced transient self‐organization strategy to rapidly and controllably fabricate ultrafine (diameter: 3–5 nm) TiNx nano‐filament percolated chaotic fractal networks is presented. The prepared surface‐mountable filter capacitors achieve a record‐breaking volumetric energy density of 9.17 mWh cm−3 at 120 Hz in an aqueous electrolyte. |
doi_str_mv | 10.1002/adma.202210038 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2799978364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799978364</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2668-7b4cede7bb4a6fee38a54f35a0e75072708e70f29002d6a3123d10b61e5e08193</originalsourceid><addsrcrecordid>eNo9kMtu2zAQRYkiBeo8tlkT6FrpkJQocWm4dRLAjwB218JIGrlMZdKlJCTpqp_QRb4wX1IaLrKaGdw7dwaHsWsBNwJAfsFmjzcSpIyTKj6wicikSFIw2RmbgFFZYnRafGLnff8IAEaDnrDXBfYU3v78vXfNWFPDtwFdb8kNfENdG4V12KGzv3Gw3nHf8q1dPfMVOh-1ue1wf_Q-UKh9h0MMWNHw5MPPnrc-8Du7-3EUY79HVxPfjKHFmuLu0o9uwKojHlMGCnyGB6zt4EN_yT622PV09b9esO_zb9vZXbJY397PpovkILUukrxK48eUV1WKuiVSBWZpqzIEyjPIZQ4F5dBKE-k0GpWQqhFQaUEZQSGMumCfT7mH4H-N1A_lox-DiydLmRtj8kLpNLrMyfVkO3opD8HuMbyUAsoj9vKIvXzHXk6_Lqfvk_oH6ix-4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799978364</pqid></control><display><type>article</type><title>Laser‐Induced Transient Self‐Organization of TiNx Nano‐Filament Percolated Networks for High Performance Surface‐Mountable Filter Capacitors</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wang, Fangcheng ; Guo, Zhenbin ; Wang, Zhiyuan ; Zhu, Haojie ; Zhao, Guangyao ; Chen, Chaojie ; Liu, Mingjie ; Sun, Rong ; Kang, Feiyu ; Wong, Ching‐Ping ; Yang, Cheng</creator><creatorcontrib>Wang, Fangcheng ; Guo, Zhenbin ; Wang, Zhiyuan ; Zhu, Haojie ; Zhao, Guangyao ; Chen, Chaojie ; Liu, Mingjie ; Sun, Rong ; Kang, Feiyu ; Wong, Ching‐Ping ; Yang, Cheng</creatorcontrib><description>Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of available electrode materials, the capacitive performance of reported MSCs drops sharply under high‐frequency alternating current. Herein, we present a unique laser‐induced transient self‐organization strategy, which synergizes pulsed laser energy and multi‐physical field controlled coalescence processes, leading to the rapid and controllable preparation of titanium nitride ultrafine nano‐filaments (diameter ≈3–5 nm) networks. Their chaotic fractal nanoporous structure, superior specific surface area, and excellent conductivity render these nanostructures promising candidates for FCs. Surface‐mounted filter capacitors based on this electrode material exhibit ultra‐long cycle‐life (2 000 000 cycles) with record ultrahigh volumetric energy density of 9.17 mWh cm−3 at 120 Hz in aqueous electrolyte, displaying advantages in function, size, and integrability compared with the state‐of‐the‐art aluminum electrolytic capacitors. The method here provides a versatile toolbox for designing novel nanostructures with intriguing characteristics and insights for developing advanced and miniaturized filter and power devices.
Preparing low‐dimensional conductive nitride‐based hierarchical structures with sub‐10 nm geometric characteristics has been a major challenge. A unique laser‐induced transient self‐organization strategy to rapidly and controllably fabricate ultrafine (diameter: 3–5 nm) TiNx nano‐filament percolated chaotic fractal networks is presented. The prepared surface‐mountable filter capacitors achieve a record‐breaking volumetric energy density of 9.17 mWh cm−3 at 120 Hz in an aqueous electrolyte.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202210038</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Aqueous electrolytes ; Controllability ; Digital electronics ; Electrode materials ; Electrodes ; Electrolytic capacitors ; Electronic devices ; Filaments ; Lasers ; laser‐induced transient self‐organization ; Materials science ; Nanostructure ; Pulsed lasers ; surface‐mountable filter capacitors ; TiN x nanonetworks ; Titanium nitride ; ultrafine nano‐filaments ; Ultrafines</subject><ispartof>Advanced materials (Weinheim), 2023-04, Vol.35 (15), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2618-4787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Fangcheng</creatorcontrib><creatorcontrib>Guo, Zhenbin</creatorcontrib><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Zhu, Haojie</creatorcontrib><creatorcontrib>Zhao, Guangyao</creatorcontrib><creatorcontrib>Chen, Chaojie</creatorcontrib><creatorcontrib>Liu, Mingjie</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Wong, Ching‐Ping</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><title>Laser‐Induced Transient Self‐Organization of TiNx Nano‐Filament Percolated Networks for High Performance Surface‐Mountable Filter Capacitors</title><title>Advanced materials (Weinheim)</title><description>Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of available electrode materials, the capacitive performance of reported MSCs drops sharply under high‐frequency alternating current. Herein, we present a unique laser‐induced transient self‐organization strategy, which synergizes pulsed laser energy and multi‐physical field controlled coalescence processes, leading to the rapid and controllable preparation of titanium nitride ultrafine nano‐filaments (diameter ≈3–5 nm) networks. Their chaotic fractal nanoporous structure, superior specific surface area, and excellent conductivity render these nanostructures promising candidates for FCs. Surface‐mounted filter capacitors based on this electrode material exhibit ultra‐long cycle‐life (2 000 000 cycles) with record ultrahigh volumetric energy density of 9.17 mWh cm−3 at 120 Hz in aqueous electrolyte, displaying advantages in function, size, and integrability compared with the state‐of‐the‐art aluminum electrolytic capacitors. The method here provides a versatile toolbox for designing novel nanostructures with intriguing characteristics and insights for developing advanced and miniaturized filter and power devices.
Preparing low‐dimensional conductive nitride‐based hierarchical structures with sub‐10 nm geometric characteristics has been a major challenge. A unique laser‐induced transient self‐organization strategy to rapidly and controllably fabricate ultrafine (diameter: 3–5 nm) TiNx nano‐filament percolated chaotic fractal networks is presented. The prepared surface‐mountable filter capacitors achieve a record‐breaking volumetric energy density of 9.17 mWh cm−3 at 120 Hz in an aqueous electrolyte.</description><subject>Aluminum</subject><subject>Aqueous electrolytes</subject><subject>Controllability</subject><subject>Digital electronics</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytic capacitors</subject><subject>Electronic devices</subject><subject>Filaments</subject><subject>Lasers</subject><subject>laser‐induced transient self‐organization</subject><subject>Materials science</subject><subject>Nanostructure</subject><subject>Pulsed lasers</subject><subject>surface‐mountable filter capacitors</subject><subject>TiN x nanonetworks</subject><subject>Titanium nitride</subject><subject>ultrafine nano‐filaments</subject><subject>Ultrafines</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtu2zAQRYkiBeo8tlkT6FrpkJQocWm4dRLAjwB218JIGrlMZdKlJCTpqp_QRb4wX1IaLrKaGdw7dwaHsWsBNwJAfsFmjzcSpIyTKj6wicikSFIw2RmbgFFZYnRafGLnff8IAEaDnrDXBfYU3v78vXfNWFPDtwFdb8kNfENdG4V12KGzv3Gw3nHf8q1dPfMVOh-1ue1wf_Q-UKh9h0MMWNHw5MPPnrc-8Du7-3EUY79HVxPfjKHFmuLu0o9uwKojHlMGCnyGB6zt4EN_yT622PV09b9esO_zb9vZXbJY397PpovkILUukrxK48eUV1WKuiVSBWZpqzIEyjPIZQ4F5dBKE-k0GpWQqhFQaUEZQSGMumCfT7mH4H-N1A_lox-DiydLmRtj8kLpNLrMyfVkO3opD8HuMbyUAsoj9vKIvXzHXk6_Lqfvk_oH6ix-4g</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Wang, Fangcheng</creator><creator>Guo, Zhenbin</creator><creator>Wang, Zhiyuan</creator><creator>Zhu, Haojie</creator><creator>Zhao, Guangyao</creator><creator>Chen, Chaojie</creator><creator>Liu, Mingjie</creator><creator>Sun, Rong</creator><creator>Kang, Feiyu</creator><creator>Wong, Ching‐Ping</creator><creator>Yang, Cheng</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2618-4787</orcidid></search><sort><creationdate>20230401</creationdate><title>Laser‐Induced Transient Self‐Organization of TiNx Nano‐Filament Percolated Networks for High Performance Surface‐Mountable Filter Capacitors</title><author>Wang, Fangcheng ; Guo, Zhenbin ; Wang, Zhiyuan ; Zhu, Haojie ; Zhao, Guangyao ; Chen, Chaojie ; Liu, Mingjie ; Sun, Rong ; Kang, Feiyu ; Wong, Ching‐Ping ; Yang, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2668-7b4cede7bb4a6fee38a54f35a0e75072708e70f29002d6a3123d10b61e5e08193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Aqueous electrolytes</topic><topic>Controllability</topic><topic>Digital electronics</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytic capacitors</topic><topic>Electronic devices</topic><topic>Filaments</topic><topic>Lasers</topic><topic>laser‐induced transient self‐organization</topic><topic>Materials science</topic><topic>Nanostructure</topic><topic>Pulsed lasers</topic><topic>surface‐mountable filter capacitors</topic><topic>TiN x nanonetworks</topic><topic>Titanium nitride</topic><topic>ultrafine nano‐filaments</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fangcheng</creatorcontrib><creatorcontrib>Guo, Zhenbin</creatorcontrib><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Zhu, Haojie</creatorcontrib><creatorcontrib>Zhao, Guangyao</creatorcontrib><creatorcontrib>Chen, Chaojie</creatorcontrib><creatorcontrib>Liu, Mingjie</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Wong, Ching‐Ping</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fangcheng</au><au>Guo, Zhenbin</au><au>Wang, Zhiyuan</au><au>Zhu, Haojie</au><au>Zhao, Guangyao</au><au>Chen, Chaojie</au><au>Liu, Mingjie</au><au>Sun, Rong</au><au>Kang, Feiyu</au><au>Wong, Ching‐Ping</au><au>Yang, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser‐Induced Transient Self‐Organization of TiNx Nano‐Filament Percolated Networks for High Performance Surface‐Mountable Filter Capacitors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>35</volume><issue>15</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of available electrode materials, the capacitive performance of reported MSCs drops sharply under high‐frequency alternating current. Herein, we present a unique laser‐induced transient self‐organization strategy, which synergizes pulsed laser energy and multi‐physical field controlled coalescence processes, leading to the rapid and controllable preparation of titanium nitride ultrafine nano‐filaments (diameter ≈3–5 nm) networks. Their chaotic fractal nanoporous structure, superior specific surface area, and excellent conductivity render these nanostructures promising candidates for FCs. Surface‐mounted filter capacitors based on this electrode material exhibit ultra‐long cycle‐life (2 000 000 cycles) with record ultrahigh volumetric energy density of 9.17 mWh cm−3 at 120 Hz in aqueous electrolyte, displaying advantages in function, size, and integrability compared with the state‐of‐the‐art aluminum electrolytic capacitors. The method here provides a versatile toolbox for designing novel nanostructures with intriguing characteristics and insights for developing advanced and miniaturized filter and power devices.
Preparing low‐dimensional conductive nitride‐based hierarchical structures with sub‐10 nm geometric characteristics has been a major challenge. A unique laser‐induced transient self‐organization strategy to rapidly and controllably fabricate ultrafine (diameter: 3–5 nm) TiNx nano‐filament percolated chaotic fractal networks is presented. The prepared surface‐mountable filter capacitors achieve a record‐breaking volumetric energy density of 9.17 mWh cm−3 at 120 Hz in an aqueous electrolyte.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202210038</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2618-4787</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-04, Vol.35 (15), p.n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_journals_2799978364 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aluminum Aqueous electrolytes Controllability Digital electronics Electrode materials Electrodes Electrolytic capacitors Electronic devices Filaments Lasers laser‐induced transient self‐organization Materials science Nanostructure Pulsed lasers surface‐mountable filter capacitors TiN x nanonetworks Titanium nitride ultrafine nano‐filaments Ultrafines |
title | Laser‐Induced Transient Self‐Organization of TiNx Nano‐Filament Percolated Networks for High Performance Surface‐Mountable Filter Capacitors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%E2%80%90Induced%20Transient%20Self%E2%80%90Organization%20of%20TiNx%20Nano%E2%80%90Filament%20Percolated%20Networks%20for%20High%20Performance%20Surface%E2%80%90Mountable%20Filter%20Capacitors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Fangcheng&rft.date=2023-04-01&rft.volume=35&rft.issue=15&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202210038&rft_dat=%3Cproquest_wiley%3E2799978364%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2668-7b4cede7bb4a6fee38a54f35a0e75072708e70f29002d6a3123d10b61e5e08193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2799978364&rft_id=info:pmid/&rfr_iscdi=true |