Loading…
Combining sensitivity and uncertainty analysis to efficiently quantify parametric uncertainties in NVH system simulation models
The acoustic and structural dynamic properties of vehicles—often referred to as Noise, Vibration, Harshness (NVH)—form a crucial criterion during product development. To reduce iterations with physical prototypes, NVH simulation models are well established. In early development phases, many paramete...
Saved in:
Published in: | Forschung im Ingenieurwesen 2023-03, Vol.87 (1), p.453-467 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-f951506b02ea8c9bc71b3883df24c3e2374e7fbc86d25b6f010bf9dc5de807c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-f951506b02ea8c9bc71b3883df24c3e2374e7fbc86d25b6f010bf9dc5de807c3 |
container_end_page | 467 |
container_issue | 1 |
container_start_page | 453 |
container_title | Forschung im Ingenieurwesen |
container_volume | 87 |
creator | Wischmann, Stefan Drichel, Pascal Jacobs, Georg Berges, Julius Berroth, Joerg |
description | The acoustic and structural dynamic properties of vehicles—often referred to as Noise, Vibration, Harshness (NVH)—form a crucial criterion during product development. To reduce iterations with physical prototypes, NVH simulation models are well established. In early development phases, many parameters of NVH models, such as material and contact properties, are either assumed based on empirical values or have to be measured. In both cases, the value of these parameters is uncertain. Thus, the output of NVH system simulation models such as structure borne or air borne sound is also uncertain and must be quantified. However, applying state-of-the-art uncertainty analysis methods to NVH simulation models considering all uncertain input parameters is inefficient due to their high computation time. Therefore, this paper presents a method of coupled sensitivity (SA) and uncertainty analysis (UA), which enables the efficient uncertainty calculation for NVH simulations. In this method, firstly the most influential parameters are determined using a SA to reduce the number of input parameters. Depending on the number of parameters and the computation time of the NVH simulation model, either the Morris SA or an EFAST SA is chosen. Finally, a fuzzy UA is performed, which quantifies the uncertainty of the output of the NVH simulation and provides its possible ranges. The procedure is applied to the NVH model for predicting air borne sound of an electric drive with 53 uncertain input parameters. |
doi_str_mv | 10.1007/s10010-023-00644-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2800198744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800198744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f951506b02ea8c9bc71b3883df24c3e2374e7fbc86d25b6f010bf9dc5de807c3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA82qy2T_ZoxS1QtFL8Rqy2aSk7GbbTFbYXvzqpl1BT15meMx7D-aH0C0l95SQ8gHipCQhKUsIKbIsOZyhGc1YlhBekHM0i-c8KXlVXaIrgO1RVjSdoa9F39XWWbfBoB3YYD9tGLF0DR6c0j5I605atiNYwKHH2hirrHahHfF-kC5YM-Kd9LLTwVv1J2c1YOvw28cSwwhBdxhsN7Qy2N7hrm90C9fowsgW9M3PnqP189N6sUxW7y-vi8dVohitQmKqnOakqEmqJVdVrUpaM85ZY9JMMZ2yMtOlqRUvmjSvCxNh1KZqVN5oTkrF5uhuqt35fj9oCGLbDz4-BSLlEUbFyyyLrnRyKd8DeG3EzttO-lFQIo6cxcRZRM7ixFkcYohNIYhmt9H-t_qf1Df2MIUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800198744</pqid></control><display><type>article</type><title>Combining sensitivity and uncertainty analysis to efficiently quantify parametric uncertainties in NVH system simulation models</title><source>Springer Nature</source><creator>Wischmann, Stefan ; Drichel, Pascal ; Jacobs, Georg ; Berges, Julius ; Berroth, Joerg</creator><creatorcontrib>Wischmann, Stefan ; Drichel, Pascal ; Jacobs, Georg ; Berges, Julius ; Berroth, Joerg</creatorcontrib><description>The acoustic and structural dynamic properties of vehicles—often referred to as Noise, Vibration, Harshness (NVH)—form a crucial criterion during product development. To reduce iterations with physical prototypes, NVH simulation models are well established. In early development phases, many parameters of NVH models, such as material and contact properties, are either assumed based on empirical values or have to be measured. In both cases, the value of these parameters is uncertain. Thus, the output of NVH system simulation models such as structure borne or air borne sound is also uncertain and must be quantified. However, applying state-of-the-art uncertainty analysis methods to NVH simulation models considering all uncertain input parameters is inefficient due to their high computation time. Therefore, this paper presents a method of coupled sensitivity (SA) and uncertainty analysis (UA), which enables the efficient uncertainty calculation for NVH simulations. In this method, firstly the most influential parameters are determined using a SA to reduce the number of input parameters. Depending on the number of parameters and the computation time of the NVH simulation model, either the Morris SA or an EFAST SA is chosen. Finally, a fuzzy UA is performed, which quantifies the uncertainty of the output of the NVH simulation and provides its possible ranges. The procedure is applied to the NVH model for predicting air borne sound of an electric drive with 53 uncertain input parameters.</description><identifier>ISSN: 0015-7899</identifier><identifier>EISSN: 1434-0860</identifier><identifier>DOI: 10.1007/s10010-023-00644-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic properties ; Computing time ; Electric contacts ; Electric drives ; Empirical analysis ; Engineering ; Mechanical Engineering ; Originalarbeiten/Originals ; Parameter uncertainty ; Product development ; Sensitivity analysis ; Simulation ; Simulation models ; Sound ; Uncertainty analysis</subject><ispartof>Forschung im Ingenieurwesen, 2023-03, Vol.87 (1), p.453-467</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f951506b02ea8c9bc71b3883df24c3e2374e7fbc86d25b6f010bf9dc5de807c3</citedby><cites>FETCH-LOGICAL-c319t-f951506b02ea8c9bc71b3883df24c3e2374e7fbc86d25b6f010bf9dc5de807c3</cites><orcidid>0000-0002-9178-0596 ; 0000-0001-6511-7080 ; 0000-0003-3648-0926 ; 0000-0002-7564-288X ; 0000-0002-5110-207X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wischmann, Stefan</creatorcontrib><creatorcontrib>Drichel, Pascal</creatorcontrib><creatorcontrib>Jacobs, Georg</creatorcontrib><creatorcontrib>Berges, Julius</creatorcontrib><creatorcontrib>Berroth, Joerg</creatorcontrib><title>Combining sensitivity and uncertainty analysis to efficiently quantify parametric uncertainties in NVH system simulation models</title><title>Forschung im Ingenieurwesen</title><addtitle>Forsch Ingenieurwes</addtitle><description>The acoustic and structural dynamic properties of vehicles—often referred to as Noise, Vibration, Harshness (NVH)—form a crucial criterion during product development. To reduce iterations with physical prototypes, NVH simulation models are well established. In early development phases, many parameters of NVH models, such as material and contact properties, are either assumed based on empirical values or have to be measured. In both cases, the value of these parameters is uncertain. Thus, the output of NVH system simulation models such as structure borne or air borne sound is also uncertain and must be quantified. However, applying state-of-the-art uncertainty analysis methods to NVH simulation models considering all uncertain input parameters is inefficient due to their high computation time. Therefore, this paper presents a method of coupled sensitivity (SA) and uncertainty analysis (UA), which enables the efficient uncertainty calculation for NVH simulations. In this method, firstly the most influential parameters are determined using a SA to reduce the number of input parameters. Depending on the number of parameters and the computation time of the NVH simulation model, either the Morris SA or an EFAST SA is chosen. Finally, a fuzzy UA is performed, which quantifies the uncertainty of the output of the NVH simulation and provides its possible ranges. The procedure is applied to the NVH model for predicting air borne sound of an electric drive with 53 uncertain input parameters.</description><subject>Acoustic properties</subject><subject>Computing time</subject><subject>Electric contacts</subject><subject>Electric drives</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Originalarbeiten/Originals</subject><subject>Parameter uncertainty</subject><subject>Product development</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>Simulation models</subject><subject>Sound</subject><subject>Uncertainty analysis</subject><issn>0015-7899</issn><issn>1434-0860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPA82qy2T_ZoxS1QtFL8Rqy2aSk7GbbTFbYXvzqpl1BT15meMx7D-aH0C0l95SQ8gHipCQhKUsIKbIsOZyhGc1YlhBekHM0i-c8KXlVXaIrgO1RVjSdoa9F39XWWbfBoB3YYD9tGLF0DR6c0j5I605atiNYwKHH2hirrHahHfF-kC5YM-Kd9LLTwVv1J2c1YOvw28cSwwhBdxhsN7Qy2N7hrm90C9fowsgW9M3PnqP189N6sUxW7y-vi8dVohitQmKqnOakqEmqJVdVrUpaM85ZY9JMMZ2yMtOlqRUvmjSvCxNh1KZqVN5oTkrF5uhuqt35fj9oCGLbDz4-BSLlEUbFyyyLrnRyKd8DeG3EzttO-lFQIo6cxcRZRM7ixFkcYohNIYhmt9H-t_qf1Df2MIUQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wischmann, Stefan</creator><creator>Drichel, Pascal</creator><creator>Jacobs, Georg</creator><creator>Berges, Julius</creator><creator>Berroth, Joerg</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9178-0596</orcidid><orcidid>https://orcid.org/0000-0001-6511-7080</orcidid><orcidid>https://orcid.org/0000-0003-3648-0926</orcidid><orcidid>https://orcid.org/0000-0002-7564-288X</orcidid><orcidid>https://orcid.org/0000-0002-5110-207X</orcidid></search><sort><creationdate>20230301</creationdate><title>Combining sensitivity and uncertainty analysis to efficiently quantify parametric uncertainties in NVH system simulation models</title><author>Wischmann, Stefan ; Drichel, Pascal ; Jacobs, Georg ; Berges, Julius ; Berroth, Joerg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f951506b02ea8c9bc71b3883df24c3e2374e7fbc86d25b6f010bf9dc5de807c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic properties</topic><topic>Computing time</topic><topic>Electric contacts</topic><topic>Electric drives</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Originalarbeiten/Originals</topic><topic>Parameter uncertainty</topic><topic>Product development</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>Simulation models</topic><topic>Sound</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wischmann, Stefan</creatorcontrib><creatorcontrib>Drichel, Pascal</creatorcontrib><creatorcontrib>Jacobs, Georg</creatorcontrib><creatorcontrib>Berges, Julius</creatorcontrib><creatorcontrib>Berroth, Joerg</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Forschung im Ingenieurwesen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wischmann, Stefan</au><au>Drichel, Pascal</au><au>Jacobs, Georg</au><au>Berges, Julius</au><au>Berroth, Joerg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining sensitivity and uncertainty analysis to efficiently quantify parametric uncertainties in NVH system simulation models</atitle><jtitle>Forschung im Ingenieurwesen</jtitle><stitle>Forsch Ingenieurwes</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>87</volume><issue>1</issue><spage>453</spage><epage>467</epage><pages>453-467</pages><issn>0015-7899</issn><eissn>1434-0860</eissn><abstract>The acoustic and structural dynamic properties of vehicles—often referred to as Noise, Vibration, Harshness (NVH)—form a crucial criterion during product development. To reduce iterations with physical prototypes, NVH simulation models are well established. In early development phases, many parameters of NVH models, such as material and contact properties, are either assumed based on empirical values or have to be measured. In both cases, the value of these parameters is uncertain. Thus, the output of NVH system simulation models such as structure borne or air borne sound is also uncertain and must be quantified. However, applying state-of-the-art uncertainty analysis methods to NVH simulation models considering all uncertain input parameters is inefficient due to their high computation time. Therefore, this paper presents a method of coupled sensitivity (SA) and uncertainty analysis (UA), which enables the efficient uncertainty calculation for NVH simulations. In this method, firstly the most influential parameters are determined using a SA to reduce the number of input parameters. Depending on the number of parameters and the computation time of the NVH simulation model, either the Morris SA or an EFAST SA is chosen. Finally, a fuzzy UA is performed, which quantifies the uncertainty of the output of the NVH simulation and provides its possible ranges. The procedure is applied to the NVH model for predicting air borne sound of an electric drive with 53 uncertain input parameters.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10010-023-00644-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9178-0596</orcidid><orcidid>https://orcid.org/0000-0001-6511-7080</orcidid><orcidid>https://orcid.org/0000-0003-3648-0926</orcidid><orcidid>https://orcid.org/0000-0002-7564-288X</orcidid><orcidid>https://orcid.org/0000-0002-5110-207X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-7899 |
ispartof | Forschung im Ingenieurwesen, 2023-03, Vol.87 (1), p.453-467 |
issn | 0015-7899 1434-0860 |
language | eng |
recordid | cdi_proquest_journals_2800198744 |
source | Springer Nature |
subjects | Acoustic properties Computing time Electric contacts Electric drives Empirical analysis Engineering Mechanical Engineering Originalarbeiten/Originals Parameter uncertainty Product development Sensitivity analysis Simulation Simulation models Sound Uncertainty analysis |
title | Combining sensitivity and uncertainty analysis to efficiently quantify parametric uncertainties in NVH system simulation models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20sensitivity%20and%20uncertainty%20analysis%20to%20efficiently%20quantify%20parametric%20uncertainties%20in%20NVH%20system%20simulation%20models&rft.jtitle=Forschung%20im%20Ingenieurwesen&rft.au=Wischmann,%20Stefan&rft.date=2023-03-01&rft.volume=87&rft.issue=1&rft.spage=453&rft.epage=467&rft.pages=453-467&rft.issn=0015-7899&rft.eissn=1434-0860&rft_id=info:doi/10.1007/s10010-023-00644-z&rft_dat=%3Cproquest_cross%3E2800198744%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f951506b02ea8c9bc71b3883df24c3e2374e7fbc86d25b6f010bf9dc5de807c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2800198744&rft_id=info:pmid/&rfr_iscdi=true |