Loading…

Combining sensitivity and uncertainty analysis to efficiently quantify parametric uncertainties in NVH system simulation models

The acoustic and structural dynamic properties of vehicles—often referred to as Noise, Vibration, Harshness (NVH)—form a crucial criterion during product development. To reduce iterations with physical prototypes, NVH simulation models are well established. In early development phases, many paramete...

Full description

Saved in:
Bibliographic Details
Published in:Forschung im Ingenieurwesen 2023-03, Vol.87 (1), p.453-467
Main Authors: Wischmann, Stefan, Drichel, Pascal, Jacobs, Georg, Berges, Julius, Berroth, Joerg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-f951506b02ea8c9bc71b3883df24c3e2374e7fbc86d25b6f010bf9dc5de807c3
cites cdi_FETCH-LOGICAL-c319t-f951506b02ea8c9bc71b3883df24c3e2374e7fbc86d25b6f010bf9dc5de807c3
container_end_page 467
container_issue 1
container_start_page 453
container_title Forschung im Ingenieurwesen
container_volume 87
creator Wischmann, Stefan
Drichel, Pascal
Jacobs, Georg
Berges, Julius
Berroth, Joerg
description The acoustic and structural dynamic properties of vehicles—often referred to as Noise, Vibration, Harshness (NVH)—form a crucial criterion during product development. To reduce iterations with physical prototypes, NVH simulation models are well established. In early development phases, many parameters of NVH models, such as material and contact properties, are either assumed based on empirical values or have to be measured. In both cases, the value of these parameters is uncertain. Thus, the output of NVH system simulation models such as structure borne or air borne sound is also uncertain and must be quantified. However, applying state-of-the-art uncertainty analysis methods to NVH simulation models considering all uncertain input parameters is inefficient due to their high computation time. Therefore, this paper presents a method of coupled sensitivity (SA) and uncertainty analysis (UA), which enables the efficient uncertainty calculation for NVH simulations. In this method, firstly the most influential parameters are determined using a SA to reduce the number of input parameters. Depending on the number of parameters and the computation time of the NVH simulation model, either the Morris SA or an EFAST SA is chosen. Finally, a fuzzy UA is performed, which quantifies the uncertainty of the output of the NVH simulation and provides its possible ranges. The procedure is applied to the NVH model for predicting air borne sound of an electric drive with 53 uncertain input parameters.
doi_str_mv 10.1007/s10010-023-00644-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2800198744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800198744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f951506b02ea8c9bc71b3883df24c3e2374e7fbc86d25b6f010bf9dc5de807c3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA82qy2T_ZoxS1QtFL8Rqy2aSk7GbbTFbYXvzqpl1BT15meMx7D-aH0C0l95SQ8gHipCQhKUsIKbIsOZyhGc1YlhBekHM0i-c8KXlVXaIrgO1RVjSdoa9F39XWWbfBoB3YYD9tGLF0DR6c0j5I605atiNYwKHH2hirrHahHfF-kC5YM-Kd9LLTwVv1J2c1YOvw28cSwwhBdxhsN7Qy2N7hrm90C9fowsgW9M3PnqP189N6sUxW7y-vi8dVohitQmKqnOakqEmqJVdVrUpaM85ZY9JMMZ2yMtOlqRUvmjSvCxNh1KZqVN5oTkrF5uhuqt35fj9oCGLbDz4-BSLlEUbFyyyLrnRyKd8DeG3EzttO-lFQIo6cxcRZRM7ixFkcYohNIYhmt9H-t_qf1Df2MIUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800198744</pqid></control><display><type>article</type><title>Combining sensitivity and uncertainty analysis to efficiently quantify parametric uncertainties in NVH system simulation models</title><source>Springer Nature</source><creator>Wischmann, Stefan ; Drichel, Pascal ; Jacobs, Georg ; Berges, Julius ; Berroth, Joerg</creator><creatorcontrib>Wischmann, Stefan ; Drichel, Pascal ; Jacobs, Georg ; Berges, Julius ; Berroth, Joerg</creatorcontrib><description>The acoustic and structural dynamic properties of vehicles—often referred to as Noise, Vibration, Harshness (NVH)—form a crucial criterion during product development. To reduce iterations with physical prototypes, NVH simulation models are well established. In early development phases, many parameters of NVH models, such as material and contact properties, are either assumed based on empirical values or have to be measured. In both cases, the value of these parameters is uncertain. Thus, the output of NVH system simulation models such as structure borne or air borne sound is also uncertain and must be quantified. However, applying state-of-the-art uncertainty analysis methods to NVH simulation models considering all uncertain input parameters is inefficient due to their high computation time. Therefore, this paper presents a method of coupled sensitivity (SA) and uncertainty analysis (UA), which enables the efficient uncertainty calculation for NVH simulations. In this method, firstly the most influential parameters are determined using a SA to reduce the number of input parameters. Depending on the number of parameters and the computation time of the NVH simulation model, either the Morris SA or an EFAST SA is chosen. Finally, a fuzzy UA is performed, which quantifies the uncertainty of the output of the NVH simulation and provides its possible ranges. The procedure is applied to the NVH model for predicting air borne sound of an electric drive with 53 uncertain input parameters.</description><identifier>ISSN: 0015-7899</identifier><identifier>EISSN: 1434-0860</identifier><identifier>DOI: 10.1007/s10010-023-00644-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic properties ; Computing time ; Electric contacts ; Electric drives ; Empirical analysis ; Engineering ; Mechanical Engineering ; Originalarbeiten/Originals ; Parameter uncertainty ; Product development ; Sensitivity analysis ; Simulation ; Simulation models ; Sound ; Uncertainty analysis</subject><ispartof>Forschung im Ingenieurwesen, 2023-03, Vol.87 (1), p.453-467</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f951506b02ea8c9bc71b3883df24c3e2374e7fbc86d25b6f010bf9dc5de807c3</citedby><cites>FETCH-LOGICAL-c319t-f951506b02ea8c9bc71b3883df24c3e2374e7fbc86d25b6f010bf9dc5de807c3</cites><orcidid>0000-0002-9178-0596 ; 0000-0001-6511-7080 ; 0000-0003-3648-0926 ; 0000-0002-7564-288X ; 0000-0002-5110-207X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wischmann, Stefan</creatorcontrib><creatorcontrib>Drichel, Pascal</creatorcontrib><creatorcontrib>Jacobs, Georg</creatorcontrib><creatorcontrib>Berges, Julius</creatorcontrib><creatorcontrib>Berroth, Joerg</creatorcontrib><title>Combining sensitivity and uncertainty analysis to efficiently quantify parametric uncertainties in NVH system simulation models</title><title>Forschung im Ingenieurwesen</title><addtitle>Forsch Ingenieurwes</addtitle><description>The acoustic and structural dynamic properties of vehicles—often referred to as Noise, Vibration, Harshness (NVH)—form a crucial criterion during product development. To reduce iterations with physical prototypes, NVH simulation models are well established. In early development phases, many parameters of NVH models, such as material and contact properties, are either assumed based on empirical values or have to be measured. In both cases, the value of these parameters is uncertain. Thus, the output of NVH system simulation models such as structure borne or air borne sound is also uncertain and must be quantified. However, applying state-of-the-art uncertainty analysis methods to NVH simulation models considering all uncertain input parameters is inefficient due to their high computation time. Therefore, this paper presents a method of coupled sensitivity (SA) and uncertainty analysis (UA), which enables the efficient uncertainty calculation for NVH simulations. In this method, firstly the most influential parameters are determined using a SA to reduce the number of input parameters. Depending on the number of parameters and the computation time of the NVH simulation model, either the Morris SA or an EFAST SA is chosen. Finally, a fuzzy UA is performed, which quantifies the uncertainty of the output of the NVH simulation and provides its possible ranges. The procedure is applied to the NVH model for predicting air borne sound of an electric drive with 53 uncertain input parameters.</description><subject>Acoustic properties</subject><subject>Computing time</subject><subject>Electric contacts</subject><subject>Electric drives</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Originalarbeiten/Originals</subject><subject>Parameter uncertainty</subject><subject>Product development</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>Simulation models</subject><subject>Sound</subject><subject>Uncertainty analysis</subject><issn>0015-7899</issn><issn>1434-0860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPA82qy2T_ZoxS1QtFL8Rqy2aSk7GbbTFbYXvzqpl1BT15meMx7D-aH0C0l95SQ8gHipCQhKUsIKbIsOZyhGc1YlhBekHM0i-c8KXlVXaIrgO1RVjSdoa9F39XWWbfBoB3YYD9tGLF0DR6c0j5I605atiNYwKHH2hirrHahHfF-kC5YM-Kd9LLTwVv1J2c1YOvw28cSwwhBdxhsN7Qy2N7hrm90C9fowsgW9M3PnqP189N6sUxW7y-vi8dVohitQmKqnOakqEmqJVdVrUpaM85ZY9JMMZ2yMtOlqRUvmjSvCxNh1KZqVN5oTkrF5uhuqt35fj9oCGLbDz4-BSLlEUbFyyyLrnRyKd8DeG3EzttO-lFQIo6cxcRZRM7ixFkcYohNIYhmt9H-t_qf1Df2MIUQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wischmann, Stefan</creator><creator>Drichel, Pascal</creator><creator>Jacobs, Georg</creator><creator>Berges, Julius</creator><creator>Berroth, Joerg</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9178-0596</orcidid><orcidid>https://orcid.org/0000-0001-6511-7080</orcidid><orcidid>https://orcid.org/0000-0003-3648-0926</orcidid><orcidid>https://orcid.org/0000-0002-7564-288X</orcidid><orcidid>https://orcid.org/0000-0002-5110-207X</orcidid></search><sort><creationdate>20230301</creationdate><title>Combining sensitivity and uncertainty analysis to efficiently quantify parametric uncertainties in NVH system simulation models</title><author>Wischmann, Stefan ; Drichel, Pascal ; Jacobs, Georg ; Berges, Julius ; Berroth, Joerg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f951506b02ea8c9bc71b3883df24c3e2374e7fbc86d25b6f010bf9dc5de807c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic properties</topic><topic>Computing time</topic><topic>Electric contacts</topic><topic>Electric drives</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Originalarbeiten/Originals</topic><topic>Parameter uncertainty</topic><topic>Product development</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>Simulation models</topic><topic>Sound</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wischmann, Stefan</creatorcontrib><creatorcontrib>Drichel, Pascal</creatorcontrib><creatorcontrib>Jacobs, Georg</creatorcontrib><creatorcontrib>Berges, Julius</creatorcontrib><creatorcontrib>Berroth, Joerg</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Forschung im Ingenieurwesen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wischmann, Stefan</au><au>Drichel, Pascal</au><au>Jacobs, Georg</au><au>Berges, Julius</au><au>Berroth, Joerg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining sensitivity and uncertainty analysis to efficiently quantify parametric uncertainties in NVH system simulation models</atitle><jtitle>Forschung im Ingenieurwesen</jtitle><stitle>Forsch Ingenieurwes</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>87</volume><issue>1</issue><spage>453</spage><epage>467</epage><pages>453-467</pages><issn>0015-7899</issn><eissn>1434-0860</eissn><abstract>The acoustic and structural dynamic properties of vehicles—often referred to as Noise, Vibration, Harshness (NVH)—form a crucial criterion during product development. To reduce iterations with physical prototypes, NVH simulation models are well established. In early development phases, many parameters of NVH models, such as material and contact properties, are either assumed based on empirical values or have to be measured. In both cases, the value of these parameters is uncertain. Thus, the output of NVH system simulation models such as structure borne or air borne sound is also uncertain and must be quantified. However, applying state-of-the-art uncertainty analysis methods to NVH simulation models considering all uncertain input parameters is inefficient due to their high computation time. Therefore, this paper presents a method of coupled sensitivity (SA) and uncertainty analysis (UA), which enables the efficient uncertainty calculation for NVH simulations. In this method, firstly the most influential parameters are determined using a SA to reduce the number of input parameters. Depending on the number of parameters and the computation time of the NVH simulation model, either the Morris SA or an EFAST SA is chosen. Finally, a fuzzy UA is performed, which quantifies the uncertainty of the output of the NVH simulation and provides its possible ranges. The procedure is applied to the NVH model for predicting air borne sound of an electric drive with 53 uncertain input parameters.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10010-023-00644-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9178-0596</orcidid><orcidid>https://orcid.org/0000-0001-6511-7080</orcidid><orcidid>https://orcid.org/0000-0003-3648-0926</orcidid><orcidid>https://orcid.org/0000-0002-7564-288X</orcidid><orcidid>https://orcid.org/0000-0002-5110-207X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0015-7899
ispartof Forschung im Ingenieurwesen, 2023-03, Vol.87 (1), p.453-467
issn 0015-7899
1434-0860
language eng
recordid cdi_proquest_journals_2800198744
source Springer Nature
subjects Acoustic properties
Computing time
Electric contacts
Electric drives
Empirical analysis
Engineering
Mechanical Engineering
Originalarbeiten/Originals
Parameter uncertainty
Product development
Sensitivity analysis
Simulation
Simulation models
Sound
Uncertainty analysis
title Combining sensitivity and uncertainty analysis to efficiently quantify parametric uncertainties in NVH system simulation models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20sensitivity%20and%20uncertainty%20analysis%20to%20efficiently%20quantify%20parametric%20uncertainties%20in%20NVH%20system%20simulation%20models&rft.jtitle=Forschung%20im%20Ingenieurwesen&rft.au=Wischmann,%20Stefan&rft.date=2023-03-01&rft.volume=87&rft.issue=1&rft.spage=453&rft.epage=467&rft.pages=453-467&rft.issn=0015-7899&rft.eissn=1434-0860&rft_id=info:doi/10.1007/s10010-023-00644-z&rft_dat=%3Cproquest_cross%3E2800198744%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f951506b02ea8c9bc71b3883df24c3e2374e7fbc86d25b6f010bf9dc5de807c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2800198744&rft_id=info:pmid/&rfr_iscdi=true