Loading…
Study on tool wear mechanism under cryogenic CO2-assisted minimum quantity lubrication technology
Cryogenic CO 2 -assisted minimum quantity lubrication milling technology is a green processing technology with broad application prospects. Aiming at the problem of tool wear in the application of cryogenic CO 2 -assisted minimum quantity lubrication in difficult-to-machine materials and the influen...
Saved in:
Published in: | International journal of advanced manufacturing technology 2023-05, Vol.126 (1-2), p.543-559 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-6dc9035a4a0b4f0ca680f44734e44905781e793458835ba5b62b64c3065578f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-6dc9035a4a0b4f0ca680f44734e44905781e793458835ba5b62b64c3065578f13 |
container_end_page | 559 |
container_issue | 1-2 |
container_start_page | 543 |
container_title | International journal of advanced manufacturing technology |
container_volume | 126 |
creator | Cheng, Lin Qiu, Tian Huang, Shizhan Xie, Hong Liu, Chao Li, Yousheng Lin, Liangliang Xiang, Zhiyang Shui, Yan Wang, Fuzeng Wu, Xian Yan, Lan Jiang, Feng |
description | Cryogenic CO
2
-assisted minimum quantity lubrication milling technology is a green processing technology with broad application prospects. Aiming at the problem of tool wear in the application of cryogenic CO
2
-assisted minimum quantity lubrication in difficult-to-machine materials and the influence of relevant parameters on tool wear, this study used coated cemented carbide tools to perform milling experiments under cryogenic CO
2
-assisted minimum quantity lubrication technology conditions. The micro-morphology of the tool and chip was observed, and the energy spectrum of the tool chip contact area was analyzed. The results show that reducing CO
2
temperature and increasing the oil flow of minimum quantity lubrication can improve the tool wear. The tool wear mechanisms under cryogenic CO
2
-assisted minimum quantity lubrication are mainly abrasive wear, diffusion wear, and oxidation wear. The chip sawtooth degree of the optimal parameter group is more conducive to chip breaking than that of dry-cutting and wet-cutting groups. The temperature of the tool-chip contact area is an important factor affecting tool wear; the higher the temperature, the faster the tool wear. At the same time, it is verified that cryogenic CO
2
-assisted minimum quantity lubrication technology can replace cutting fluid in hard-to-machine materials under certain conditions. |
doi_str_mv | 10.1007/s00170-023-11122-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2801021017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801021017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6dc9035a4a0b4f0ca680f44734e44905781e793458835ba5b62b64c3065578f13</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI7-AVcB19GbR9N2KYMvGJiFug5pmo4Z2mQmaZH-e6MjuHOVxT3fCRyErincUoDyLgHQEggwTiiljJH6BC2o4JxwoMUpWgCTFeGlrM7RRUq7jEsqqwXSr-PUzjh4PIbQ40-rIx6s-dDepQFPvrURmziHrfXO4NWGEZ2SS6Nt8eC8G6YBHybtRzfOuJ-a6Iwe3bctO3zow3a-RGed7pO9-n2X6P3x4W31TNabp5fV_ZoYLvlIZGtq4IUWGhrRgdGygk6IkgsrRA1FWVFb1lwUVcWLRheNZI0UhoMs8q2jfIlujt59DIfJplHtwhR9_lKxCigwmhNlih0pE0NK0XZqH92g46woqO-U6phS5ZTqJ6Wq84gfRynDfmvjn_qf1Rf77XZv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801021017</pqid></control><display><type>article</type><title>Study on tool wear mechanism under cryogenic CO2-assisted minimum quantity lubrication technology</title><source>Springer Link</source><creator>Cheng, Lin ; Qiu, Tian ; Huang, Shizhan ; Xie, Hong ; Liu, Chao ; Li, Yousheng ; Lin, Liangliang ; Xiang, Zhiyang ; Shui, Yan ; Wang, Fuzeng ; Wu, Xian ; Yan, Lan ; Jiang, Feng</creator><creatorcontrib>Cheng, Lin ; Qiu, Tian ; Huang, Shizhan ; Xie, Hong ; Liu, Chao ; Li, Yousheng ; Lin, Liangliang ; Xiang, Zhiyang ; Shui, Yan ; Wang, Fuzeng ; Wu, Xian ; Yan, Lan ; Jiang, Feng</creatorcontrib><description>Cryogenic CO
2
-assisted minimum quantity lubrication milling technology is a green processing technology with broad application prospects. Aiming at the problem of tool wear in the application of cryogenic CO
2
-assisted minimum quantity lubrication in difficult-to-machine materials and the influence of relevant parameters on tool wear, this study used coated cemented carbide tools to perform milling experiments under cryogenic CO
2
-assisted minimum quantity lubrication technology conditions. The micro-morphology of the tool and chip was observed, and the energy spectrum of the tool chip contact area was analyzed. The results show that reducing CO
2
temperature and increasing the oil flow of minimum quantity lubrication can improve the tool wear. The tool wear mechanisms under cryogenic CO
2
-assisted minimum quantity lubrication are mainly abrasive wear, diffusion wear, and oxidation wear. The chip sawtooth degree of the optimal parameter group is more conducive to chip breaking than that of dry-cutting and wet-cutting groups. The temperature of the tool-chip contact area is an important factor affecting tool wear; the higher the temperature, the faster the tool wear. At the same time, it is verified that cryogenic CO
2
-assisted minimum quantity lubrication technology can replace cutting fluid in hard-to-machine materials under certain conditions.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-023-11122-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Abrasive wear ; Advanced manufacturing technologies ; CAE) and Design ; Carbide tools ; Carbon dioxide ; Cemented carbides ; Computer-Aided Engineering (CAD ; Cooling ; Cutting fluids ; Energy spectra ; Engineering ; Experiments ; Industrial and Production Engineering ; Lubrication ; Manufacturing ; Mechanical Engineering ; Media Management ; Milling (machining) ; Nitrogen ; Original Article ; Oxidation ; Parameters ; Titanium alloys ; Tool wear ; Wear mechanisms</subject><ispartof>International journal of advanced manufacturing technology, 2023-05, Vol.126 (1-2), p.543-559</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6dc9035a4a0b4f0ca680f44734e44905781e793458835ba5b62b64c3065578f13</citedby><cites>FETCH-LOGICAL-c363t-6dc9035a4a0b4f0ca680f44734e44905781e793458835ba5b62b64c3065578f13</cites><orcidid>0000-0003-4938-7798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheng, Lin</creatorcontrib><creatorcontrib>Qiu, Tian</creatorcontrib><creatorcontrib>Huang, Shizhan</creatorcontrib><creatorcontrib>Xie, Hong</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Li, Yousheng</creatorcontrib><creatorcontrib>Lin, Liangliang</creatorcontrib><creatorcontrib>Xiang, Zhiyang</creatorcontrib><creatorcontrib>Shui, Yan</creatorcontrib><creatorcontrib>Wang, Fuzeng</creatorcontrib><creatorcontrib>Wu, Xian</creatorcontrib><creatorcontrib>Yan, Lan</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><title>Study on tool wear mechanism under cryogenic CO2-assisted minimum quantity lubrication technology</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Cryogenic CO
2
-assisted minimum quantity lubrication milling technology is a green processing technology with broad application prospects. Aiming at the problem of tool wear in the application of cryogenic CO
2
-assisted minimum quantity lubrication in difficult-to-machine materials and the influence of relevant parameters on tool wear, this study used coated cemented carbide tools to perform milling experiments under cryogenic CO
2
-assisted minimum quantity lubrication technology conditions. The micro-morphology of the tool and chip was observed, and the energy spectrum of the tool chip contact area was analyzed. The results show that reducing CO
2
temperature and increasing the oil flow of minimum quantity lubrication can improve the tool wear. The tool wear mechanisms under cryogenic CO
2
-assisted minimum quantity lubrication are mainly abrasive wear, diffusion wear, and oxidation wear. The chip sawtooth degree of the optimal parameter group is more conducive to chip breaking than that of dry-cutting and wet-cutting groups. The temperature of the tool-chip contact area is an important factor affecting tool wear; the higher the temperature, the faster the tool wear. At the same time, it is verified that cryogenic CO
2
-assisted minimum quantity lubrication technology can replace cutting fluid in hard-to-machine materials under certain conditions.</description><subject>Abrasive wear</subject><subject>Advanced manufacturing technologies</subject><subject>CAE) and Design</subject><subject>Carbide tools</subject><subject>Carbon dioxide</subject><subject>Cemented carbides</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cooling</subject><subject>Cutting fluids</subject><subject>Energy spectra</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Industrial and Production Engineering</subject><subject>Lubrication</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Milling (machining)</subject><subject>Nitrogen</subject><subject>Original Article</subject><subject>Oxidation</subject><subject>Parameters</subject><subject>Titanium alloys</subject><subject>Tool wear</subject><subject>Wear mechanisms</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAURoMoOI7-AVcB19GbR9N2KYMvGJiFug5pmo4Z2mQmaZH-e6MjuHOVxT3fCRyErincUoDyLgHQEggwTiiljJH6BC2o4JxwoMUpWgCTFeGlrM7RRUq7jEsqqwXSr-PUzjh4PIbQ40-rIx6s-dDepQFPvrURmziHrfXO4NWGEZ2SS6Nt8eC8G6YBHybtRzfOuJ-a6Iwe3bctO3zow3a-RGed7pO9-n2X6P3x4W31TNabp5fV_ZoYLvlIZGtq4IUWGhrRgdGygk6IkgsrRA1FWVFb1lwUVcWLRheNZI0UhoMs8q2jfIlujt59DIfJplHtwhR9_lKxCigwmhNlih0pE0NK0XZqH92g46woqO-U6phS5ZTqJ6Wq84gfRynDfmvjn_qf1Rf77XZv</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Cheng, Lin</creator><creator>Qiu, Tian</creator><creator>Huang, Shizhan</creator><creator>Xie, Hong</creator><creator>Liu, Chao</creator><creator>Li, Yousheng</creator><creator>Lin, Liangliang</creator><creator>Xiang, Zhiyang</creator><creator>Shui, Yan</creator><creator>Wang, Fuzeng</creator><creator>Wu, Xian</creator><creator>Yan, Lan</creator><creator>Jiang, Feng</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4938-7798</orcidid></search><sort><creationdate>20230501</creationdate><title>Study on tool wear mechanism under cryogenic CO2-assisted minimum quantity lubrication technology</title><author>Cheng, Lin ; Qiu, Tian ; Huang, Shizhan ; Xie, Hong ; Liu, Chao ; Li, Yousheng ; Lin, Liangliang ; Xiang, Zhiyang ; Shui, Yan ; Wang, Fuzeng ; Wu, Xian ; Yan, Lan ; Jiang, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6dc9035a4a0b4f0ca680f44734e44905781e793458835ba5b62b64c3065578f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abrasive wear</topic><topic>Advanced manufacturing technologies</topic><topic>CAE) and Design</topic><topic>Carbide tools</topic><topic>Carbon dioxide</topic><topic>Cemented carbides</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cooling</topic><topic>Cutting fluids</topic><topic>Energy spectra</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Industrial and Production Engineering</topic><topic>Lubrication</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Milling (machining)</topic><topic>Nitrogen</topic><topic>Original Article</topic><topic>Oxidation</topic><topic>Parameters</topic><topic>Titanium alloys</topic><topic>Tool wear</topic><topic>Wear mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Lin</creatorcontrib><creatorcontrib>Qiu, Tian</creatorcontrib><creatorcontrib>Huang, Shizhan</creatorcontrib><creatorcontrib>Xie, Hong</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Li, Yousheng</creatorcontrib><creatorcontrib>Lin, Liangliang</creatorcontrib><creatorcontrib>Xiang, Zhiyang</creatorcontrib><creatorcontrib>Shui, Yan</creatorcontrib><creatorcontrib>Wang, Fuzeng</creatorcontrib><creatorcontrib>Wu, Xian</creatorcontrib><creatorcontrib>Yan, Lan</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Lin</au><au>Qiu, Tian</au><au>Huang, Shizhan</au><au>Xie, Hong</au><au>Liu, Chao</au><au>Li, Yousheng</au><au>Lin, Liangliang</au><au>Xiang, Zhiyang</au><au>Shui, Yan</au><au>Wang, Fuzeng</au><au>Wu, Xian</au><au>Yan, Lan</au><au>Jiang, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on tool wear mechanism under cryogenic CO2-assisted minimum quantity lubrication technology</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>126</volume><issue>1-2</issue><spage>543</spage><epage>559</epage><pages>543-559</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Cryogenic CO
2
-assisted minimum quantity lubrication milling technology is a green processing technology with broad application prospects. Aiming at the problem of tool wear in the application of cryogenic CO
2
-assisted minimum quantity lubrication in difficult-to-machine materials and the influence of relevant parameters on tool wear, this study used coated cemented carbide tools to perform milling experiments under cryogenic CO
2
-assisted minimum quantity lubrication technology conditions. The micro-morphology of the tool and chip was observed, and the energy spectrum of the tool chip contact area was analyzed. The results show that reducing CO
2
temperature and increasing the oil flow of minimum quantity lubrication can improve the tool wear. The tool wear mechanisms under cryogenic CO
2
-assisted minimum quantity lubrication are mainly abrasive wear, diffusion wear, and oxidation wear. The chip sawtooth degree of the optimal parameter group is more conducive to chip breaking than that of dry-cutting and wet-cutting groups. The temperature of the tool-chip contact area is an important factor affecting tool wear; the higher the temperature, the faster the tool wear. At the same time, it is verified that cryogenic CO
2
-assisted minimum quantity lubrication technology can replace cutting fluid in hard-to-machine materials under certain conditions.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-023-11122-9</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4938-7798</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2023-05, Vol.126 (1-2), p.543-559 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2801021017 |
source | Springer Link |
subjects | Abrasive wear Advanced manufacturing technologies CAE) and Design Carbide tools Carbon dioxide Cemented carbides Computer-Aided Engineering (CAD Cooling Cutting fluids Energy spectra Engineering Experiments Industrial and Production Engineering Lubrication Manufacturing Mechanical Engineering Media Management Milling (machining) Nitrogen Original Article Oxidation Parameters Titanium alloys Tool wear Wear mechanisms |
title | Study on tool wear mechanism under cryogenic CO2-assisted minimum quantity lubrication technology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20tool%20wear%20mechanism%20under%20cryogenic%20CO2-assisted%20minimum%20quantity%20lubrication%20technology&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Cheng,%20Lin&rft.date=2023-05-01&rft.volume=126&rft.issue=1-2&rft.spage=543&rft.epage=559&rft.pages=543-559&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-023-11122-9&rft_dat=%3Cproquest_cross%3E2801021017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-6dc9035a4a0b4f0ca680f44734e44905781e793458835ba5b62b64c3065578f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2801021017&rft_id=info:pmid/&rfr_iscdi=true |