Loading…

Study on tool wear mechanism under cryogenic CO2-assisted minimum quantity lubrication technology

Cryogenic CO 2 -assisted minimum quantity lubrication milling technology is a green processing technology with broad application prospects. Aiming at the problem of tool wear in the application of cryogenic CO 2 -assisted minimum quantity lubrication in difficult-to-machine materials and the influen...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2023-05, Vol.126 (1-2), p.543-559
Main Authors: Cheng, Lin, Qiu, Tian, Huang, Shizhan, Xie, Hong, Liu, Chao, Li, Yousheng, Lin, Liangliang, Xiang, Zhiyang, Shui, Yan, Wang, Fuzeng, Wu, Xian, Yan, Lan, Jiang, Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-6dc9035a4a0b4f0ca680f44734e44905781e793458835ba5b62b64c3065578f13
cites cdi_FETCH-LOGICAL-c363t-6dc9035a4a0b4f0ca680f44734e44905781e793458835ba5b62b64c3065578f13
container_end_page 559
container_issue 1-2
container_start_page 543
container_title International journal of advanced manufacturing technology
container_volume 126
creator Cheng, Lin
Qiu, Tian
Huang, Shizhan
Xie, Hong
Liu, Chao
Li, Yousheng
Lin, Liangliang
Xiang, Zhiyang
Shui, Yan
Wang, Fuzeng
Wu, Xian
Yan, Lan
Jiang, Feng
description Cryogenic CO 2 -assisted minimum quantity lubrication milling technology is a green processing technology with broad application prospects. Aiming at the problem of tool wear in the application of cryogenic CO 2 -assisted minimum quantity lubrication in difficult-to-machine materials and the influence of relevant parameters on tool wear, this study used coated cemented carbide tools to perform milling experiments under cryogenic CO 2 -assisted minimum quantity lubrication technology conditions. The micro-morphology of the tool and chip was observed, and the energy spectrum of the tool chip contact area was analyzed. The results show that reducing CO 2 temperature and increasing the oil flow of minimum quantity lubrication can improve the tool wear. The tool wear mechanisms under cryogenic CO 2 -assisted minimum quantity lubrication are mainly abrasive wear, diffusion wear, and oxidation wear. The chip sawtooth degree of the optimal parameter group is more conducive to chip breaking than that of dry-cutting and wet-cutting groups. The temperature of the tool-chip contact area is an important factor affecting tool wear; the higher the temperature, the faster the tool wear. At the same time, it is verified that cryogenic CO 2 -assisted minimum quantity lubrication technology can replace cutting fluid in hard-to-machine materials under certain conditions.
doi_str_mv 10.1007/s00170-023-11122-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2801021017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801021017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6dc9035a4a0b4f0ca680f44734e44905781e793458835ba5b62b64c3065578f13</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI7-AVcB19GbR9N2KYMvGJiFug5pmo4Z2mQmaZH-e6MjuHOVxT3fCRyErincUoDyLgHQEggwTiiljJH6BC2o4JxwoMUpWgCTFeGlrM7RRUq7jEsqqwXSr-PUzjh4PIbQ40-rIx6s-dDepQFPvrURmziHrfXO4NWGEZ2SS6Nt8eC8G6YBHybtRzfOuJ-a6Iwe3bctO3zow3a-RGed7pO9-n2X6P3x4W31TNabp5fV_ZoYLvlIZGtq4IUWGhrRgdGygk6IkgsrRA1FWVFb1lwUVcWLRheNZI0UhoMs8q2jfIlujt59DIfJplHtwhR9_lKxCigwmhNlih0pE0NK0XZqH92g46woqO-U6phS5ZTqJ6Wq84gfRynDfmvjn_qf1Rf77XZv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801021017</pqid></control><display><type>article</type><title>Study on tool wear mechanism under cryogenic CO2-assisted minimum quantity lubrication technology</title><source>Springer Link</source><creator>Cheng, Lin ; Qiu, Tian ; Huang, Shizhan ; Xie, Hong ; Liu, Chao ; Li, Yousheng ; Lin, Liangliang ; Xiang, Zhiyang ; Shui, Yan ; Wang, Fuzeng ; Wu, Xian ; Yan, Lan ; Jiang, Feng</creator><creatorcontrib>Cheng, Lin ; Qiu, Tian ; Huang, Shizhan ; Xie, Hong ; Liu, Chao ; Li, Yousheng ; Lin, Liangliang ; Xiang, Zhiyang ; Shui, Yan ; Wang, Fuzeng ; Wu, Xian ; Yan, Lan ; Jiang, Feng</creatorcontrib><description>Cryogenic CO 2 -assisted minimum quantity lubrication milling technology is a green processing technology with broad application prospects. Aiming at the problem of tool wear in the application of cryogenic CO 2 -assisted minimum quantity lubrication in difficult-to-machine materials and the influence of relevant parameters on tool wear, this study used coated cemented carbide tools to perform milling experiments under cryogenic CO 2 -assisted minimum quantity lubrication technology conditions. The micro-morphology of the tool and chip was observed, and the energy spectrum of the tool chip contact area was analyzed. The results show that reducing CO 2 temperature and increasing the oil flow of minimum quantity lubrication can improve the tool wear. The tool wear mechanisms under cryogenic CO 2 -assisted minimum quantity lubrication are mainly abrasive wear, diffusion wear, and oxidation wear. The chip sawtooth degree of the optimal parameter group is more conducive to chip breaking than that of dry-cutting and wet-cutting groups. The temperature of the tool-chip contact area is an important factor affecting tool wear; the higher the temperature, the faster the tool wear. At the same time, it is verified that cryogenic CO 2 -assisted minimum quantity lubrication technology can replace cutting fluid in hard-to-machine materials under certain conditions.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-023-11122-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Abrasive wear ; Advanced manufacturing technologies ; CAE) and Design ; Carbide tools ; Carbon dioxide ; Cemented carbides ; Computer-Aided Engineering (CAD ; Cooling ; Cutting fluids ; Energy spectra ; Engineering ; Experiments ; Industrial and Production Engineering ; Lubrication ; Manufacturing ; Mechanical Engineering ; Media Management ; Milling (machining) ; Nitrogen ; Original Article ; Oxidation ; Parameters ; Titanium alloys ; Tool wear ; Wear mechanisms</subject><ispartof>International journal of advanced manufacturing technology, 2023-05, Vol.126 (1-2), p.543-559</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6dc9035a4a0b4f0ca680f44734e44905781e793458835ba5b62b64c3065578f13</citedby><cites>FETCH-LOGICAL-c363t-6dc9035a4a0b4f0ca680f44734e44905781e793458835ba5b62b64c3065578f13</cites><orcidid>0000-0003-4938-7798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheng, Lin</creatorcontrib><creatorcontrib>Qiu, Tian</creatorcontrib><creatorcontrib>Huang, Shizhan</creatorcontrib><creatorcontrib>Xie, Hong</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Li, Yousheng</creatorcontrib><creatorcontrib>Lin, Liangliang</creatorcontrib><creatorcontrib>Xiang, Zhiyang</creatorcontrib><creatorcontrib>Shui, Yan</creatorcontrib><creatorcontrib>Wang, Fuzeng</creatorcontrib><creatorcontrib>Wu, Xian</creatorcontrib><creatorcontrib>Yan, Lan</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><title>Study on tool wear mechanism under cryogenic CO2-assisted minimum quantity lubrication technology</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Cryogenic CO 2 -assisted minimum quantity lubrication milling technology is a green processing technology with broad application prospects. Aiming at the problem of tool wear in the application of cryogenic CO 2 -assisted minimum quantity lubrication in difficult-to-machine materials and the influence of relevant parameters on tool wear, this study used coated cemented carbide tools to perform milling experiments under cryogenic CO 2 -assisted minimum quantity lubrication technology conditions. The micro-morphology of the tool and chip was observed, and the energy spectrum of the tool chip contact area was analyzed. The results show that reducing CO 2 temperature and increasing the oil flow of minimum quantity lubrication can improve the tool wear. The tool wear mechanisms under cryogenic CO 2 -assisted minimum quantity lubrication are mainly abrasive wear, diffusion wear, and oxidation wear. The chip sawtooth degree of the optimal parameter group is more conducive to chip breaking than that of dry-cutting and wet-cutting groups. The temperature of the tool-chip contact area is an important factor affecting tool wear; the higher the temperature, the faster the tool wear. At the same time, it is verified that cryogenic CO 2 -assisted minimum quantity lubrication technology can replace cutting fluid in hard-to-machine materials under certain conditions.</description><subject>Abrasive wear</subject><subject>Advanced manufacturing technologies</subject><subject>CAE) and Design</subject><subject>Carbide tools</subject><subject>Carbon dioxide</subject><subject>Cemented carbides</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cooling</subject><subject>Cutting fluids</subject><subject>Energy spectra</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Industrial and Production Engineering</subject><subject>Lubrication</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Milling (machining)</subject><subject>Nitrogen</subject><subject>Original Article</subject><subject>Oxidation</subject><subject>Parameters</subject><subject>Titanium alloys</subject><subject>Tool wear</subject><subject>Wear mechanisms</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAURoMoOI7-AVcB19GbR9N2KYMvGJiFug5pmo4Z2mQmaZH-e6MjuHOVxT3fCRyErincUoDyLgHQEggwTiiljJH6BC2o4JxwoMUpWgCTFeGlrM7RRUq7jEsqqwXSr-PUzjh4PIbQ40-rIx6s-dDepQFPvrURmziHrfXO4NWGEZ2SS6Nt8eC8G6YBHybtRzfOuJ-a6Iwe3bctO3zow3a-RGed7pO9-n2X6P3x4W31TNabp5fV_ZoYLvlIZGtq4IUWGhrRgdGygk6IkgsrRA1FWVFb1lwUVcWLRheNZI0UhoMs8q2jfIlujt59DIfJplHtwhR9_lKxCigwmhNlih0pE0NK0XZqH92g46woqO-U6phS5ZTqJ6Wq84gfRynDfmvjn_qf1Rf77XZv</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Cheng, Lin</creator><creator>Qiu, Tian</creator><creator>Huang, Shizhan</creator><creator>Xie, Hong</creator><creator>Liu, Chao</creator><creator>Li, Yousheng</creator><creator>Lin, Liangliang</creator><creator>Xiang, Zhiyang</creator><creator>Shui, Yan</creator><creator>Wang, Fuzeng</creator><creator>Wu, Xian</creator><creator>Yan, Lan</creator><creator>Jiang, Feng</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4938-7798</orcidid></search><sort><creationdate>20230501</creationdate><title>Study on tool wear mechanism under cryogenic CO2-assisted minimum quantity lubrication technology</title><author>Cheng, Lin ; Qiu, Tian ; Huang, Shizhan ; Xie, Hong ; Liu, Chao ; Li, Yousheng ; Lin, Liangliang ; Xiang, Zhiyang ; Shui, Yan ; Wang, Fuzeng ; Wu, Xian ; Yan, Lan ; Jiang, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6dc9035a4a0b4f0ca680f44734e44905781e793458835ba5b62b64c3065578f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abrasive wear</topic><topic>Advanced manufacturing technologies</topic><topic>CAE) and Design</topic><topic>Carbide tools</topic><topic>Carbon dioxide</topic><topic>Cemented carbides</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cooling</topic><topic>Cutting fluids</topic><topic>Energy spectra</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Industrial and Production Engineering</topic><topic>Lubrication</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Milling (machining)</topic><topic>Nitrogen</topic><topic>Original Article</topic><topic>Oxidation</topic><topic>Parameters</topic><topic>Titanium alloys</topic><topic>Tool wear</topic><topic>Wear mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Lin</creatorcontrib><creatorcontrib>Qiu, Tian</creatorcontrib><creatorcontrib>Huang, Shizhan</creatorcontrib><creatorcontrib>Xie, Hong</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Li, Yousheng</creatorcontrib><creatorcontrib>Lin, Liangliang</creatorcontrib><creatorcontrib>Xiang, Zhiyang</creatorcontrib><creatorcontrib>Shui, Yan</creatorcontrib><creatorcontrib>Wang, Fuzeng</creatorcontrib><creatorcontrib>Wu, Xian</creatorcontrib><creatorcontrib>Yan, Lan</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Lin</au><au>Qiu, Tian</au><au>Huang, Shizhan</au><au>Xie, Hong</au><au>Liu, Chao</au><au>Li, Yousheng</au><au>Lin, Liangliang</au><au>Xiang, Zhiyang</au><au>Shui, Yan</au><au>Wang, Fuzeng</au><au>Wu, Xian</au><au>Yan, Lan</au><au>Jiang, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on tool wear mechanism under cryogenic CO2-assisted minimum quantity lubrication technology</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>126</volume><issue>1-2</issue><spage>543</spage><epage>559</epage><pages>543-559</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Cryogenic CO 2 -assisted minimum quantity lubrication milling technology is a green processing technology with broad application prospects. Aiming at the problem of tool wear in the application of cryogenic CO 2 -assisted minimum quantity lubrication in difficult-to-machine materials and the influence of relevant parameters on tool wear, this study used coated cemented carbide tools to perform milling experiments under cryogenic CO 2 -assisted minimum quantity lubrication technology conditions. The micro-morphology of the tool and chip was observed, and the energy spectrum of the tool chip contact area was analyzed. The results show that reducing CO 2 temperature and increasing the oil flow of minimum quantity lubrication can improve the tool wear. The tool wear mechanisms under cryogenic CO 2 -assisted minimum quantity lubrication are mainly abrasive wear, diffusion wear, and oxidation wear. The chip sawtooth degree of the optimal parameter group is more conducive to chip breaking than that of dry-cutting and wet-cutting groups. The temperature of the tool-chip contact area is an important factor affecting tool wear; the higher the temperature, the faster the tool wear. At the same time, it is verified that cryogenic CO 2 -assisted minimum quantity lubrication technology can replace cutting fluid in hard-to-machine materials under certain conditions.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-023-11122-9</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4938-7798</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2023-05, Vol.126 (1-2), p.543-559
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2801021017
source Springer Link
subjects Abrasive wear
Advanced manufacturing technologies
CAE) and Design
Carbide tools
Carbon dioxide
Cemented carbides
Computer-Aided Engineering (CAD
Cooling
Cutting fluids
Energy spectra
Engineering
Experiments
Industrial and Production Engineering
Lubrication
Manufacturing
Mechanical Engineering
Media Management
Milling (machining)
Nitrogen
Original Article
Oxidation
Parameters
Titanium alloys
Tool wear
Wear mechanisms
title Study on tool wear mechanism under cryogenic CO2-assisted minimum quantity lubrication technology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20tool%20wear%20mechanism%20under%20cryogenic%20CO2-assisted%20minimum%20quantity%20lubrication%20technology&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Cheng,%20Lin&rft.date=2023-05-01&rft.volume=126&rft.issue=1-2&rft.spage=543&rft.epage=559&rft.pages=543-559&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-023-11122-9&rft_dat=%3Cproquest_cross%3E2801021017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-6dc9035a4a0b4f0ca680f44734e44905781e793458835ba5b62b64c3065578f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2801021017&rft_id=info:pmid/&rfr_iscdi=true