Loading…

On the role of the macroscopic deformation in liquid film drainage between bubbles

The collision of bubbles in multiphase reactors is critical to bubble size distribution. However, the theoretical models that can reasonably predict collision outcomes and the experimental data that can be used to directly verify the models are still very lacking. We studied the collision of two bub...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2023-05, Vol.69 (5), p.n/a
Main Authors: Song, Runci, Zhang, Ling, Yi, Zhengming, Zhou, Yefeng, Yuan, Haizhuan, Han, Luchang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2974-b3e7592c903d1ac0a2afa9fe618809753c3b10dc32083f05b32fc949e11f1d1d3
cites cdi_FETCH-LOGICAL-c2974-b3e7592c903d1ac0a2afa9fe618809753c3b10dc32083f05b32fc949e11f1d1d3
container_end_page n/a
container_issue 5
container_start_page
container_title AIChE journal
container_volume 69
creator Song, Runci
Zhang, Ling
Yi, Zhengming
Zhou, Yefeng
Yuan, Haizhuan
Han, Luchang
description The collision of bubbles in multiphase reactors is critical to bubble size distribution. However, the theoretical models that can reasonably predict collision outcomes and the experimental data that can be used to directly verify the models are still very lacking. We studied the collision of two bubbles in clean water through experiments and theoretical modeling, revealing the mechanism that the collision result shifts from coalescence to rebound with increasing collision velocity. The macroscopic deformation (MacrD) of bubbles is associated with the film drainage via a segmented linear equation as a function of the film radius and initial Weber number. Thus, the current model can reflect the effect of MacrD in a self‐consistent way. The coalescence times and critical coalescence velocities predicted by the model were in good agreement with the experiments. This work provides novel insights into bubble coalescence modeling and serves to improve the accuracy of reactor simulations.
doi_str_mv 10.1002/aic.18044
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2801504709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801504709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2974-b3e7592c903d1ac0a2afa9fe618809753c3b10dc32083f05b32fc949e11f1d1d3</originalsourceid><addsrcrecordid>eNp1kEtLw0AQgBdRsFYP_oMFTx7SzuwmJnssxUehUBA9L5vNrG5Js-0mofjvTRuvnubBNzPMx9g9wgwBxNx4O8MC0vSCTTBL8yRTkF2yCQBgMjTwmt207XaoRF6ICXvfNLz7Jh5DTTy4c74zNobWhr23vCIX4s50PjTcN7z2h95X3Pl6x6tofGO-iJfUHYkaXvZlWVN7y66cqVu6-4tT9vny_LF8S9ab19VysU6sUHmalJLyTAmrQFZoLBhhnFGOnrAoQOWZtLJEqKwUUEgHWSmFsypVhOiwwkpO2cO4dx_Doae209vQx2Y4qUUBmEGagxqox5E6_dRGcnof_c7EH42gT8r0oEyflQ3sfGSPvqaf_0G9WC3HiV-wJmxb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801504709</pqid></control><display><type>article</type><title>On the role of the macroscopic deformation in liquid film drainage between bubbles</title><source>Wiley</source><creator>Song, Runci ; Zhang, Ling ; Yi, Zhengming ; Zhou, Yefeng ; Yuan, Haizhuan ; Han, Luchang</creator><creatorcontrib>Song, Runci ; Zhang, Ling ; Yi, Zhengming ; Zhou, Yefeng ; Yuan, Haizhuan ; Han, Luchang</creatorcontrib><description>The collision of bubbles in multiphase reactors is critical to bubble size distribution. However, the theoretical models that can reasonably predict collision outcomes and the experimental data that can be used to directly verify the models are still very lacking. We studied the collision of two bubbles in clean water through experiments and theoretical modeling, revealing the mechanism that the collision result shifts from coalescence to rebound with increasing collision velocity. The macroscopic deformation (MacrD) of bubbles is associated with the film drainage via a segmented linear equation as a function of the film radius and initial Weber number. Thus, the current model can reflect the effect of MacrD in a self‐consistent way. The coalescence times and critical coalescence velocities predicted by the model were in good agreement with the experiments. This work provides novel insights into bubble coalescence modeling and serves to improve the accuracy of reactor simulations.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18044</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>bubble deformation ; Bubbles ; Coalescence ; critical velocity ; Deformation ; Drainage ; film drainage ; Linear equations ; Modelling ; Reactors ; rebound ; Size distribution ; Weber number</subject><ispartof>AIChE journal, 2023-05, Vol.69 (5), p.n/a</ispartof><rights>2023 American Institute of Chemical Engineers.</rights><rights>2023 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2974-b3e7592c903d1ac0a2afa9fe618809753c3b10dc32083f05b32fc949e11f1d1d3</citedby><cites>FETCH-LOGICAL-c2974-b3e7592c903d1ac0a2afa9fe618809753c3b10dc32083f05b32fc949e11f1d1d3</cites><orcidid>0000-0002-9538-1031 ; 0000-0001-5796-786X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Song, Runci</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Yi, Zhengming</creatorcontrib><creatorcontrib>Zhou, Yefeng</creatorcontrib><creatorcontrib>Yuan, Haizhuan</creatorcontrib><creatorcontrib>Han, Luchang</creatorcontrib><title>On the role of the macroscopic deformation in liquid film drainage between bubbles</title><title>AIChE journal</title><description>The collision of bubbles in multiphase reactors is critical to bubble size distribution. However, the theoretical models that can reasonably predict collision outcomes and the experimental data that can be used to directly verify the models are still very lacking. We studied the collision of two bubbles in clean water through experiments and theoretical modeling, revealing the mechanism that the collision result shifts from coalescence to rebound with increasing collision velocity. The macroscopic deformation (MacrD) of bubbles is associated with the film drainage via a segmented linear equation as a function of the film radius and initial Weber number. Thus, the current model can reflect the effect of MacrD in a self‐consistent way. The coalescence times and critical coalescence velocities predicted by the model were in good agreement with the experiments. This work provides novel insights into bubble coalescence modeling and serves to improve the accuracy of reactor simulations.</description><subject>bubble deformation</subject><subject>Bubbles</subject><subject>Coalescence</subject><subject>critical velocity</subject><subject>Deformation</subject><subject>Drainage</subject><subject>film drainage</subject><subject>Linear equations</subject><subject>Modelling</subject><subject>Reactors</subject><subject>rebound</subject><subject>Size distribution</subject><subject>Weber number</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AQgBdRsFYP_oMFTx7SzuwmJnssxUehUBA9L5vNrG5Js-0mofjvTRuvnubBNzPMx9g9wgwBxNx4O8MC0vSCTTBL8yRTkF2yCQBgMjTwmt207XaoRF6ICXvfNLz7Jh5DTTy4c74zNobWhr23vCIX4s50PjTcN7z2h95X3Pl6x6tofGO-iJfUHYkaXvZlWVN7y66cqVu6-4tT9vny_LF8S9ab19VysU6sUHmalJLyTAmrQFZoLBhhnFGOnrAoQOWZtLJEqKwUUEgHWSmFsypVhOiwwkpO2cO4dx_Doae209vQx2Y4qUUBmEGagxqox5E6_dRGcnof_c7EH42gT8r0oEyflQ3sfGSPvqaf_0G9WC3HiV-wJmxb</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Song, Runci</creator><creator>Zhang, Ling</creator><creator>Yi, Zhengming</creator><creator>Zhou, Yefeng</creator><creator>Yuan, Haizhuan</creator><creator>Han, Luchang</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9538-1031</orcidid><orcidid>https://orcid.org/0000-0001-5796-786X</orcidid></search><sort><creationdate>202305</creationdate><title>On the role of the macroscopic deformation in liquid film drainage between bubbles</title><author>Song, Runci ; Zhang, Ling ; Yi, Zhengming ; Zhou, Yefeng ; Yuan, Haizhuan ; Han, Luchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2974-b3e7592c903d1ac0a2afa9fe618809753c3b10dc32083f05b32fc949e11f1d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bubble deformation</topic><topic>Bubbles</topic><topic>Coalescence</topic><topic>critical velocity</topic><topic>Deformation</topic><topic>Drainage</topic><topic>film drainage</topic><topic>Linear equations</topic><topic>Modelling</topic><topic>Reactors</topic><topic>rebound</topic><topic>Size distribution</topic><topic>Weber number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Runci</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Yi, Zhengming</creatorcontrib><creatorcontrib>Zhou, Yefeng</creatorcontrib><creatorcontrib>Yuan, Haizhuan</creatorcontrib><creatorcontrib>Han, Luchang</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Runci</au><au>Zhang, Ling</au><au>Yi, Zhengming</au><au>Zhou, Yefeng</au><au>Yuan, Haizhuan</au><au>Han, Luchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the role of the macroscopic deformation in liquid film drainage between bubbles</atitle><jtitle>AIChE journal</jtitle><date>2023-05</date><risdate>2023</risdate><volume>69</volume><issue>5</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>The collision of bubbles in multiphase reactors is critical to bubble size distribution. However, the theoretical models that can reasonably predict collision outcomes and the experimental data that can be used to directly verify the models are still very lacking. We studied the collision of two bubbles in clean water through experiments and theoretical modeling, revealing the mechanism that the collision result shifts from coalescence to rebound with increasing collision velocity. The macroscopic deformation (MacrD) of bubbles is associated with the film drainage via a segmented linear equation as a function of the film radius and initial Weber number. Thus, the current model can reflect the effect of MacrD in a self‐consistent way. The coalescence times and critical coalescence velocities predicted by the model were in good agreement with the experiments. This work provides novel insights into bubble coalescence modeling and serves to improve the accuracy of reactor simulations.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.18044</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9538-1031</orcidid><orcidid>https://orcid.org/0000-0001-5796-786X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2023-05, Vol.69 (5), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2801504709
source Wiley
subjects bubble deformation
Bubbles
Coalescence
critical velocity
Deformation
Drainage
film drainage
Linear equations
Modelling
Reactors
rebound
Size distribution
Weber number
title On the role of the macroscopic deformation in liquid film drainage between bubbles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20role%20of%20the%20macroscopic%20deformation%20in%20liquid%20film%20drainage%20between%20bubbles&rft.jtitle=AIChE%20journal&rft.au=Song,%20Runci&rft.date=2023-05&rft.volume=69&rft.issue=5&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18044&rft_dat=%3Cproquest_cross%3E2801504709%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2974-b3e7592c903d1ac0a2afa9fe618809753c3b10dc32083f05b32fc949e11f1d1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2801504709&rft_id=info:pmid/&rfr_iscdi=true