Loading…

A Canonical Complex Structure and the Bosonic Signature Operator for Scalar Fields in Globally Hyperbolic Spacetimes

The bosonic signature operator is defined for Klein–Gordon fields and massless scalar fields on globally hyperbolic Lorentzian manifolds of infinite lifetime. The construction is based on an analysis of families of solutions of the Klein–Gordon equation with a varying mass parameter. It makes use of...

Full description

Saved in:
Bibliographic Details
Published in:Annales Henri Poincaré 2023-04, Vol.24 (4), p.1185-1209
Main Authors: Finster, Felix, Much, Albert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-9127fbbe065ade2b9e897a3a99542ed35d17c7e1c96a7ef31f1fb10a641e49493
container_end_page 1209
container_issue 4
container_start_page 1185
container_title Annales Henri Poincaré
container_volume 24
creator Finster, Felix
Much, Albert
description The bosonic signature operator is defined for Klein–Gordon fields and massless scalar fields on globally hyperbolic Lorentzian manifolds of infinite lifetime. The construction is based on an analysis of families of solutions of the Klein–Gordon equation with a varying mass parameter. It makes use of the so-called bosonic mass oscillation property which states that integrating over the mass parameter generates decay of the field at infinity. We derive a canonical decomposition of the solution space of the Klein–Gordon equation into two subspaces, independent of observers or the choice of coordinates. This decomposition endows the solution space with a canonical complex structure. It also gives rise to a distinguished quasi-free state. Taking a suitable limit where the mass tends to zero, we obtain corresponding results for massless fields. Our constructions and results are illustrated in the examples of Minkowski space and ultrastatic spacetimes.
doi_str_mv 10.1007/s00023-022-01236-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2801712028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801712028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-9127fbbe065ade2b9e897a3a99542ed35d17c7e1c96a7ef31f1fb10a641e49493</originalsourceid><addsrcrecordid>eNp9kEFLwzAUgIMoOKd_wFPAczUv6drlOIfbhMEO03NI29fZkTU1ScH9e7NV9OYhJJDvew8-Qu6BPQJj-ZNnjHGRMM4TBlxkibggI0h5mrAsg8vft8ivyY33exapqZAjEmZ0rlvbNqU2dG4PncEvug2uL0PvkOq2ouED6bP1J4Zum12rzz-bDp0O1tE6nm20taOLBk3ladPSpbGFNuZIV8fIFdac3E6XGJoD-ltyVWvj8e7nHpP3xcvbfJWsN8vX-WydlALSkEjgeV0UyLKJrpAXEqcy10JLOUk5VmJSQV7mCKXMdI61gBrqApjOUsBUplKMycMwt3P2s0cf1N72ro0rFZ8yyIGzWGFM-ECVznrvsFadaw7aHRUwdaqrhroq1lXnukpESQySj3C7Q_c3-h_rGzcffaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801712028</pqid></control><display><type>article</type><title>A Canonical Complex Structure and the Bosonic Signature Operator for Scalar Fields in Globally Hyperbolic Spacetimes</title><source>Springer Link</source><creator>Finster, Felix ; Much, Albert</creator><creatorcontrib>Finster, Felix ; Much, Albert</creatorcontrib><description>The bosonic signature operator is defined for Klein–Gordon fields and massless scalar fields on globally hyperbolic Lorentzian manifolds of infinite lifetime. The construction is based on an analysis of families of solutions of the Klein–Gordon equation with a varying mass parameter. It makes use of the so-called bosonic mass oscillation property which states that integrating over the mass parameter generates decay of the field at infinity. We derive a canonical decomposition of the solution space of the Klein–Gordon equation into two subspaces, independent of observers or the choice of coordinates. This decomposition endows the solution space with a canonical complex structure. It also gives rise to a distinguished quasi-free state. Taking a suitable limit where the mass tends to zero, we obtain corresponding results for massless fields. Our constructions and results are illustrated in the examples of Minkowski space and ultrastatic spacetimes.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-022-01236-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Quantum Gravitation ; Decomposition ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Klein-Gordon equation ; Manifolds (mathematics) ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Minkowski space ; Operators (mathematics) ; Original Paper ; Parameters ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Scalars ; Solution space ; Subspaces ; Theoretical</subject><ispartof>Annales Henri Poincaré, 2023-04, Vol.24 (4), p.1185-1209</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-9127fbbe065ade2b9e897a3a99542ed35d17c7e1c96a7ef31f1fb10a641e49493</cites><orcidid>0000-0002-9531-7742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Finster, Felix</creatorcontrib><creatorcontrib>Much, Albert</creatorcontrib><title>A Canonical Complex Structure and the Bosonic Signature Operator for Scalar Fields in Globally Hyperbolic Spacetimes</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>The bosonic signature operator is defined for Klein–Gordon fields and massless scalar fields on globally hyperbolic Lorentzian manifolds of infinite lifetime. The construction is based on an analysis of families of solutions of the Klein–Gordon equation with a varying mass parameter. It makes use of the so-called bosonic mass oscillation property which states that integrating over the mass parameter generates decay of the field at infinity. We derive a canonical decomposition of the solution space of the Klein–Gordon equation into two subspaces, independent of observers or the choice of coordinates. This decomposition endows the solution space with a canonical complex structure. It also gives rise to a distinguished quasi-free state. Taking a suitable limit where the mass tends to zero, we obtain corresponding results for massless fields. Our constructions and results are illustrated in the examples of Minkowski space and ultrastatic spacetimes.</description><subject>Classical and Quantum Gravitation</subject><subject>Decomposition</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Klein-Gordon equation</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Minkowski space</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Scalars</subject><subject>Solution space</subject><subject>Subspaces</subject><subject>Theoretical</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUgIMoOKd_wFPAczUv6drlOIfbhMEO03NI29fZkTU1ScH9e7NV9OYhJJDvew8-Qu6BPQJj-ZNnjHGRMM4TBlxkibggI0h5mrAsg8vft8ivyY33exapqZAjEmZ0rlvbNqU2dG4PncEvug2uL0PvkOq2ouED6bP1J4Zum12rzz-bDp0O1tE6nm20taOLBk3ladPSpbGFNuZIV8fIFdac3E6XGJoD-ltyVWvj8e7nHpP3xcvbfJWsN8vX-WydlALSkEjgeV0UyLKJrpAXEqcy10JLOUk5VmJSQV7mCKXMdI61gBrqApjOUsBUplKMycMwt3P2s0cf1N72ro0rFZ8yyIGzWGFM-ECVznrvsFadaw7aHRUwdaqrhroq1lXnukpESQySj3C7Q_c3-h_rGzcffaw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Finster, Felix</creator><creator>Much, Albert</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9531-7742</orcidid></search><sort><creationdate>20230401</creationdate><title>A Canonical Complex Structure and the Bosonic Signature Operator for Scalar Fields in Globally Hyperbolic Spacetimes</title><author>Finster, Felix ; Much, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-9127fbbe065ade2b9e897a3a99542ed35d17c7e1c96a7ef31f1fb10a641e49493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Decomposition</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Klein-Gordon equation</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Minkowski space</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Scalars</topic><topic>Solution space</topic><topic>Subspaces</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finster, Felix</creatorcontrib><creatorcontrib>Much, Albert</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finster, Felix</au><au>Much, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Canonical Complex Structure and the Bosonic Signature Operator for Scalar Fields in Globally Hyperbolic Spacetimes</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>24</volume><issue>4</issue><spage>1185</spage><epage>1209</epage><pages>1185-1209</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>The bosonic signature operator is defined for Klein–Gordon fields and massless scalar fields on globally hyperbolic Lorentzian manifolds of infinite lifetime. The construction is based on an analysis of families of solutions of the Klein–Gordon equation with a varying mass parameter. It makes use of the so-called bosonic mass oscillation property which states that integrating over the mass parameter generates decay of the field at infinity. We derive a canonical decomposition of the solution space of the Klein–Gordon equation into two subspaces, independent of observers or the choice of coordinates. This decomposition endows the solution space with a canonical complex structure. It also gives rise to a distinguished quasi-free state. Taking a suitable limit where the mass tends to zero, we obtain corresponding results for massless fields. Our constructions and results are illustrated in the examples of Minkowski space and ultrastatic spacetimes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-022-01236-3</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9531-7742</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-0637
ispartof Annales Henri Poincaré, 2023-04, Vol.24 (4), p.1185-1209
issn 1424-0637
1424-0661
language eng
recordid cdi_proquest_journals_2801712028
source Springer Link
subjects Classical and Quantum Gravitation
Decomposition
Dynamical Systems and Ergodic Theory
Elementary Particles
Klein-Gordon equation
Manifolds (mathematics)
Mathematical and Computational Physics
Mathematical Methods in Physics
Minkowski space
Operators (mathematics)
Original Paper
Parameters
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Relativity Theory
Scalars
Solution space
Subspaces
Theoretical
title A Canonical Complex Structure and the Bosonic Signature Operator for Scalar Fields in Globally Hyperbolic Spacetimes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Canonical%20Complex%20Structure%20and%20the%20Bosonic%20Signature%20Operator%20for%20Scalar%20Fields%20in%20Globally%20Hyperbolic%20Spacetimes&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Finster,%20Felix&rft.date=2023-04-01&rft.volume=24&rft.issue=4&rft.spage=1185&rft.epage=1209&rft.pages=1185-1209&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-022-01236-3&rft_dat=%3Cproquest_cross%3E2801712028%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-9127fbbe065ade2b9e897a3a99542ed35d17c7e1c96a7ef31f1fb10a641e49493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2801712028&rft_id=info:pmid/&rfr_iscdi=true