Loading…
A Canonical Complex Structure and the Bosonic Signature Operator for Scalar Fields in Globally Hyperbolic Spacetimes
The bosonic signature operator is defined for Klein–Gordon fields and massless scalar fields on globally hyperbolic Lorentzian manifolds of infinite lifetime. The construction is based on an analysis of families of solutions of the Klein–Gordon equation with a varying mass parameter. It makes use of...
Saved in:
Published in: | Annales Henri Poincaré 2023-04, Vol.24 (4), p.1185-1209 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-9127fbbe065ade2b9e897a3a99542ed35d17c7e1c96a7ef31f1fb10a641e49493 |
container_end_page | 1209 |
container_issue | 4 |
container_start_page | 1185 |
container_title | Annales Henri Poincaré |
container_volume | 24 |
creator | Finster, Felix Much, Albert |
description | The bosonic signature operator is defined for Klein–Gordon fields and massless scalar fields on globally hyperbolic Lorentzian manifolds of infinite lifetime. The construction is based on an analysis of families of solutions of the Klein–Gordon equation with a varying mass parameter. It makes use of the so-called bosonic mass oscillation property which states that integrating over the mass parameter generates decay of the field at infinity. We derive a canonical decomposition of the solution space of the Klein–Gordon equation into two subspaces, independent of observers or the choice of coordinates. This decomposition endows the solution space with a canonical complex structure. It also gives rise to a distinguished quasi-free state. Taking a suitable limit where the mass tends to zero, we obtain corresponding results for massless fields. Our constructions and results are illustrated in the examples of Minkowski space and ultrastatic spacetimes. |
doi_str_mv | 10.1007/s00023-022-01236-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2801712028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801712028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-9127fbbe065ade2b9e897a3a99542ed35d17c7e1c96a7ef31f1fb10a641e49493</originalsourceid><addsrcrecordid>eNp9kEFLwzAUgIMoOKd_wFPAczUv6drlOIfbhMEO03NI29fZkTU1ScH9e7NV9OYhJJDvew8-Qu6BPQJj-ZNnjHGRMM4TBlxkibggI0h5mrAsg8vft8ivyY33exapqZAjEmZ0rlvbNqU2dG4PncEvug2uL0PvkOq2ouED6bP1J4Zum12rzz-bDp0O1tE6nm20taOLBk3ladPSpbGFNuZIV8fIFdac3E6XGJoD-ltyVWvj8e7nHpP3xcvbfJWsN8vX-WydlALSkEjgeV0UyLKJrpAXEqcy10JLOUk5VmJSQV7mCKXMdI61gBrqApjOUsBUplKMycMwt3P2s0cf1N72ro0rFZ8yyIGzWGFM-ECVznrvsFadaw7aHRUwdaqrhroq1lXnukpESQySj3C7Q_c3-h_rGzcffaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801712028</pqid></control><display><type>article</type><title>A Canonical Complex Structure and the Bosonic Signature Operator for Scalar Fields in Globally Hyperbolic Spacetimes</title><source>Springer Link</source><creator>Finster, Felix ; Much, Albert</creator><creatorcontrib>Finster, Felix ; Much, Albert</creatorcontrib><description>The bosonic signature operator is defined for Klein–Gordon fields and massless scalar fields on globally hyperbolic Lorentzian manifolds of infinite lifetime. The construction is based on an analysis of families of solutions of the Klein–Gordon equation with a varying mass parameter. It makes use of the so-called bosonic mass oscillation property which states that integrating over the mass parameter generates decay of the field at infinity. We derive a canonical decomposition of the solution space of the Klein–Gordon equation into two subspaces, independent of observers or the choice of coordinates. This decomposition endows the solution space with a canonical complex structure. It also gives rise to a distinguished quasi-free state. Taking a suitable limit where the mass tends to zero, we obtain corresponding results for massless fields. Our constructions and results are illustrated in the examples of Minkowski space and ultrastatic spacetimes.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-022-01236-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Quantum Gravitation ; Decomposition ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Klein-Gordon equation ; Manifolds (mathematics) ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Minkowski space ; Operators (mathematics) ; Original Paper ; Parameters ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Scalars ; Solution space ; Subspaces ; Theoretical</subject><ispartof>Annales Henri Poincaré, 2023-04, Vol.24 (4), p.1185-1209</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-9127fbbe065ade2b9e897a3a99542ed35d17c7e1c96a7ef31f1fb10a641e49493</cites><orcidid>0000-0002-9531-7742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Finster, Felix</creatorcontrib><creatorcontrib>Much, Albert</creatorcontrib><title>A Canonical Complex Structure and the Bosonic Signature Operator for Scalar Fields in Globally Hyperbolic Spacetimes</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>The bosonic signature operator is defined for Klein–Gordon fields and massless scalar fields on globally hyperbolic Lorentzian manifolds of infinite lifetime. The construction is based on an analysis of families of solutions of the Klein–Gordon equation with a varying mass parameter. It makes use of the so-called bosonic mass oscillation property which states that integrating over the mass parameter generates decay of the field at infinity. We derive a canonical decomposition of the solution space of the Klein–Gordon equation into two subspaces, independent of observers or the choice of coordinates. This decomposition endows the solution space with a canonical complex structure. It also gives rise to a distinguished quasi-free state. Taking a suitable limit where the mass tends to zero, we obtain corresponding results for massless fields. Our constructions and results are illustrated in the examples of Minkowski space and ultrastatic spacetimes.</description><subject>Classical and Quantum Gravitation</subject><subject>Decomposition</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Klein-Gordon equation</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Minkowski space</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Scalars</subject><subject>Solution space</subject><subject>Subspaces</subject><subject>Theoretical</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUgIMoOKd_wFPAczUv6drlOIfbhMEO03NI29fZkTU1ScH9e7NV9OYhJJDvew8-Qu6BPQJj-ZNnjHGRMM4TBlxkibggI0h5mrAsg8vft8ivyY33exapqZAjEmZ0rlvbNqU2dG4PncEvug2uL0PvkOq2ouED6bP1J4Zum12rzz-bDp0O1tE6nm20taOLBk3ladPSpbGFNuZIV8fIFdac3E6XGJoD-ltyVWvj8e7nHpP3xcvbfJWsN8vX-WydlALSkEjgeV0UyLKJrpAXEqcy10JLOUk5VmJSQV7mCKXMdI61gBrqApjOUsBUplKMycMwt3P2s0cf1N72ro0rFZ8yyIGzWGFM-ECVznrvsFadaw7aHRUwdaqrhroq1lXnukpESQySj3C7Q_c3-h_rGzcffaw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Finster, Felix</creator><creator>Much, Albert</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9531-7742</orcidid></search><sort><creationdate>20230401</creationdate><title>A Canonical Complex Structure and the Bosonic Signature Operator for Scalar Fields in Globally Hyperbolic Spacetimes</title><author>Finster, Felix ; Much, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-9127fbbe065ade2b9e897a3a99542ed35d17c7e1c96a7ef31f1fb10a641e49493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Decomposition</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Klein-Gordon equation</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Minkowski space</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Scalars</topic><topic>Solution space</topic><topic>Subspaces</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finster, Felix</creatorcontrib><creatorcontrib>Much, Albert</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finster, Felix</au><au>Much, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Canonical Complex Structure and the Bosonic Signature Operator for Scalar Fields in Globally Hyperbolic Spacetimes</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>24</volume><issue>4</issue><spage>1185</spage><epage>1209</epage><pages>1185-1209</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>The bosonic signature operator is defined for Klein–Gordon fields and massless scalar fields on globally hyperbolic Lorentzian manifolds of infinite lifetime. The construction is based on an analysis of families of solutions of the Klein–Gordon equation with a varying mass parameter. It makes use of the so-called bosonic mass oscillation property which states that integrating over the mass parameter generates decay of the field at infinity. We derive a canonical decomposition of the solution space of the Klein–Gordon equation into two subspaces, independent of observers or the choice of coordinates. This decomposition endows the solution space with a canonical complex structure. It also gives rise to a distinguished quasi-free state. Taking a suitable limit where the mass tends to zero, we obtain corresponding results for massless fields. Our constructions and results are illustrated in the examples of Minkowski space and ultrastatic spacetimes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-022-01236-3</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9531-7742</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-0637 |
ispartof | Annales Henri Poincaré, 2023-04, Vol.24 (4), p.1185-1209 |
issn | 1424-0637 1424-0661 |
language | eng |
recordid | cdi_proquest_journals_2801712028 |
source | Springer Link |
subjects | Classical and Quantum Gravitation Decomposition Dynamical Systems and Ergodic Theory Elementary Particles Klein-Gordon equation Manifolds (mathematics) Mathematical and Computational Physics Mathematical Methods in Physics Minkowski space Operators (mathematics) Original Paper Parameters Physics Physics and Astronomy Quantum Field Theory Quantum Physics Relativity Theory Scalars Solution space Subspaces Theoretical |
title | A Canonical Complex Structure and the Bosonic Signature Operator for Scalar Fields in Globally Hyperbolic Spacetimes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Canonical%20Complex%20Structure%20and%20the%20Bosonic%20Signature%20Operator%20for%20Scalar%20Fields%20in%20Globally%20Hyperbolic%20Spacetimes&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Finster,%20Felix&rft.date=2023-04-01&rft.volume=24&rft.issue=4&rft.spage=1185&rft.epage=1209&rft.pages=1185-1209&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-022-01236-3&rft_dat=%3Cproquest_cross%3E2801712028%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-9127fbbe065ade2b9e897a3a99542ed35d17c7e1c96a7ef31f1fb10a641e49493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2801712028&rft_id=info:pmid/&rfr_iscdi=true |