Loading…
Voros Coefficients for the Hypergeometric Differential Equations and Eynard–Orantin’s Topological Recursion: Part I—For the Weber Equation
We develop the theory of quantization of spectral curves via the topological recursion. We formulate a quantization scheme of spectral curves which is not necessarily admissible in the sense of Bouchard and Eynard. The main result of this paper and the second part (Iwaki et al. in Voros coefficients...
Saved in:
Published in: | Annales Henri Poincaré 2023-04, Vol.24 (4), p.1305-1353 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-19f56e2952aa2834e4b0fb267510afa53a4da490c0b6bf966dfdaf7face4a22a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-19f56e2952aa2834e4b0fb267510afa53a4da490c0b6bf966dfdaf7face4a22a3 |
container_end_page | 1353 |
container_issue | 4 |
container_start_page | 1305 |
container_title | Annales Henri Poincaré |
container_volume | 24 |
creator | Iwaki, Kohei Koike, Tatsuya Takei, Yumiko |
description | We develop the theory of quantization of spectral curves via the topological recursion. We formulate a quantization scheme of spectral curves which is not necessarily admissible in the sense of Bouchard and Eynard. The main result of this paper and the second part (Iwaki et al. in Voros coefficients for the hypergeometric differential equations and Eynard–Orantin’s topological recursion, part II: for the confluent family of hypergeometric equations, preprint;
arXiv:1810.02946
) establishes a relation between the Voros coefficients for the quantum curves and the free energy for spectral curves associated with the confluent family of Gauss hypergeometric differential equations. We focus on the Weber equation in this article and generalize the result for the other members of the confluent family in the second part. We also find explicit formulas of free energy for those spectral curves in terms of the Bernoulli numbers. |
doi_str_mv | 10.1007/s00023-022-01235-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2801712145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801712145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-19f56e2952aa2834e4b0fb267510afa53a4da490c0b6bf966dfdaf7face4a22a3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhiMEEqXwAkyWmAO24yQNGyotrVSpCBUYrUtyLqnaOLWToVsfAQkWXq9PgiFV2ZjO0n3_f_LneZeMXjNK4xtLKeWBTzn3KeNB6Isjr8MEFz6NInZ8eAfxqXdm7YI6qhckHe_9RRttSV-jUkVWYFlborQh9RuS0aZCM0e9wtoUGbkvlELjiAKWZLBuoC50aQmUORlsSjD5bvsxNeD25W77ZclMV3qp50Xm8CfMGmMdf0sewdRkvNt-DvdnXjFFcyg8904ULC1e7GfXex4OZv2RP5k-jPt3Ez8LemHts0SFEfIk5ADuJwJFSlXKozhkFBSEAYgcREIzmkapSqIoVzmoWEGGAjiHoOtdtb2V0esGbS0XujGlOyl5j7KYcSZCR_GWypwla1DJyhQrMBvJqPwxL1vz0pmXv-alcKGgDVkHl3M0f9X_pL4BkMmMGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801712145</pqid></control><display><type>article</type><title>Voros Coefficients for the Hypergeometric Differential Equations and Eynard–Orantin’s Topological Recursion: Part I—For the Weber Equation</title><source>Springer Nature</source><creator>Iwaki, Kohei ; Koike, Tatsuya ; Takei, Yumiko</creator><creatorcontrib>Iwaki, Kohei ; Koike, Tatsuya ; Takei, Yumiko</creatorcontrib><description>We develop the theory of quantization of spectral curves via the topological recursion. We formulate a quantization scheme of spectral curves which is not necessarily admissible in the sense of Bouchard and Eynard. The main result of this paper and the second part (Iwaki et al. in Voros coefficients for the hypergeometric differential equations and Eynard–Orantin’s topological recursion, part II: for the confluent family of hypergeometric equations, preprint;
arXiv:1810.02946
) establishes a relation between the Voros coefficients for the quantum curves and the free energy for spectral curves associated with the confluent family of Gauss hypergeometric differential equations. We focus on the Weber equation in this article and generalize the result for the other members of the confluent family in the second part. We also find explicit formulas of free energy for those spectral curves in terms of the Bernoulli numbers.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-022-01235-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Quantum Gravitation ; Coefficients ; Differential equations ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Free energy ; Hypergeometric functions ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Measurement ; Original Paper ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Theoretical ; Topology</subject><ispartof>Annales Henri Poincaré, 2023-04, Vol.24 (4), p.1305-1353</ispartof><rights>Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-19f56e2952aa2834e4b0fb267510afa53a4da490c0b6bf966dfdaf7face4a22a3</citedby><cites>FETCH-LOGICAL-c385t-19f56e2952aa2834e4b0fb267510afa53a4da490c0b6bf966dfdaf7face4a22a3</cites><orcidid>0000-0002-4884-1453</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Iwaki, Kohei</creatorcontrib><creatorcontrib>Koike, Tatsuya</creatorcontrib><creatorcontrib>Takei, Yumiko</creatorcontrib><title>Voros Coefficients for the Hypergeometric Differential Equations and Eynard–Orantin’s Topological Recursion: Part I—For the Weber Equation</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>We develop the theory of quantization of spectral curves via the topological recursion. We formulate a quantization scheme of spectral curves which is not necessarily admissible in the sense of Bouchard and Eynard. The main result of this paper and the second part (Iwaki et al. in Voros coefficients for the hypergeometric differential equations and Eynard–Orantin’s topological recursion, part II: for the confluent family of hypergeometric equations, preprint;
arXiv:1810.02946
) establishes a relation between the Voros coefficients for the quantum curves and the free energy for spectral curves associated with the confluent family of Gauss hypergeometric differential equations. We focus on the Weber equation in this article and generalize the result for the other members of the confluent family in the second part. We also find explicit formulas of free energy for those spectral curves in terms of the Bernoulli numbers.</description><subject>Classical and Quantum Gravitation</subject><subject>Coefficients</subject><subject>Differential equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Free energy</subject><subject>Hypergeometric functions</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Measurement</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><subject>Topology</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhiMEEqXwAkyWmAO24yQNGyotrVSpCBUYrUtyLqnaOLWToVsfAQkWXq9PgiFV2ZjO0n3_f_LneZeMXjNK4xtLKeWBTzn3KeNB6Isjr8MEFz6NInZ8eAfxqXdm7YI6qhckHe_9RRttSV-jUkVWYFlborQh9RuS0aZCM0e9wtoUGbkvlELjiAKWZLBuoC50aQmUORlsSjD5bvsxNeD25W77ZclMV3qp50Xm8CfMGmMdf0sewdRkvNt-DvdnXjFFcyg8904ULC1e7GfXex4OZv2RP5k-jPt3Ez8LemHts0SFEfIk5ADuJwJFSlXKozhkFBSEAYgcREIzmkapSqIoVzmoWEGGAjiHoOtdtb2V0esGbS0XujGlOyl5j7KYcSZCR_GWypwla1DJyhQrMBvJqPwxL1vz0pmXv-alcKGgDVkHl3M0f9X_pL4BkMmMGg</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Iwaki, Kohei</creator><creator>Koike, Tatsuya</creator><creator>Takei, Yumiko</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4884-1453</orcidid></search><sort><creationdate>20230401</creationdate><title>Voros Coefficients for the Hypergeometric Differential Equations and Eynard–Orantin’s Topological Recursion: Part I—For the Weber Equation</title><author>Iwaki, Kohei ; Koike, Tatsuya ; Takei, Yumiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-19f56e2952aa2834e4b0fb267510afa53a4da490c0b6bf966dfdaf7face4a22a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Coefficients</topic><topic>Differential equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Free energy</topic><topic>Hypergeometric functions</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Measurement</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwaki, Kohei</creatorcontrib><creatorcontrib>Koike, Tatsuya</creatorcontrib><creatorcontrib>Takei, Yumiko</creatorcontrib><collection>CrossRef</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwaki, Kohei</au><au>Koike, Tatsuya</au><au>Takei, Yumiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voros Coefficients for the Hypergeometric Differential Equations and Eynard–Orantin’s Topological Recursion: Part I—For the Weber Equation</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>24</volume><issue>4</issue><spage>1305</spage><epage>1353</epage><pages>1305-1353</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>We develop the theory of quantization of spectral curves via the topological recursion. We formulate a quantization scheme of spectral curves which is not necessarily admissible in the sense of Bouchard and Eynard. The main result of this paper and the second part (Iwaki et al. in Voros coefficients for the hypergeometric differential equations and Eynard–Orantin’s topological recursion, part II: for the confluent family of hypergeometric equations, preprint;
arXiv:1810.02946
) establishes a relation between the Voros coefficients for the quantum curves and the free energy for spectral curves associated with the confluent family of Gauss hypergeometric differential equations. We focus on the Weber equation in this article and generalize the result for the other members of the confluent family in the second part. We also find explicit formulas of free energy for those spectral curves in terms of the Bernoulli numbers.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-022-01235-4</doi><tpages>49</tpages><orcidid>https://orcid.org/0000-0002-4884-1453</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-0637 |
ispartof | Annales Henri Poincaré, 2023-04, Vol.24 (4), p.1305-1353 |
issn | 1424-0637 1424-0661 |
language | eng |
recordid | cdi_proquest_journals_2801712145 |
source | Springer Nature |
subjects | Classical and Quantum Gravitation Coefficients Differential equations Dynamical Systems and Ergodic Theory Elementary Particles Free energy Hypergeometric functions Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Measurement Original Paper Physics Physics and Astronomy Quantum Field Theory Quantum Physics Relativity Theory Theoretical Topology |
title | Voros Coefficients for the Hypergeometric Differential Equations and Eynard–Orantin’s Topological Recursion: Part I—For the Weber Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voros%20Coefficients%20for%20the%20Hypergeometric%20Differential%20Equations%20and%20Eynard%E2%80%93Orantin%E2%80%99s%20Topological%20Recursion:%20Part%20I%E2%80%94For%20the%20Weber%20Equation&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Iwaki,%20Kohei&rft.date=2023-04-01&rft.volume=24&rft.issue=4&rft.spage=1305&rft.epage=1353&rft.pages=1305-1353&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-022-01235-4&rft_dat=%3Cproquest_cross%3E2801712145%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-19f56e2952aa2834e4b0fb267510afa53a4da490c0b6bf966dfdaf7face4a22a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2801712145&rft_id=info:pmid/&rfr_iscdi=true |