Loading…

Voros Coefficients for the Hypergeometric Differential Equations and Eynard–Orantin’s Topological Recursion: Part I—For the Weber Equation

We develop the theory of quantization of spectral curves via the topological recursion. We formulate a quantization scheme of spectral curves which is not necessarily admissible in the sense of Bouchard and Eynard. The main result of this paper and the second part (Iwaki et al. in Voros coefficients...

Full description

Saved in:
Bibliographic Details
Published in:Annales Henri Poincaré 2023-04, Vol.24 (4), p.1305-1353
Main Authors: Iwaki, Kohei, Koike, Tatsuya, Takei, Yumiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-19f56e2952aa2834e4b0fb267510afa53a4da490c0b6bf966dfdaf7face4a22a3
cites cdi_FETCH-LOGICAL-c385t-19f56e2952aa2834e4b0fb267510afa53a4da490c0b6bf966dfdaf7face4a22a3
container_end_page 1353
container_issue 4
container_start_page 1305
container_title Annales Henri Poincaré
container_volume 24
creator Iwaki, Kohei
Koike, Tatsuya
Takei, Yumiko
description We develop the theory of quantization of spectral curves via the topological recursion. We formulate a quantization scheme of spectral curves which is not necessarily admissible in the sense of Bouchard and Eynard. The main result of this paper and the second part (Iwaki et al. in Voros coefficients for the hypergeometric differential equations and Eynard–Orantin’s topological recursion, part II: for the confluent family of hypergeometric equations, preprint; arXiv:1810.02946 ) establishes a relation between the Voros coefficients for the quantum curves and the free energy for spectral curves associated with the confluent family of Gauss hypergeometric differential equations. We focus on the Weber equation in this article and generalize the result for the other members of the confluent family in the second part. We also find explicit formulas of free energy for those spectral curves in terms of the Bernoulli numbers.
doi_str_mv 10.1007/s00023-022-01235-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2801712145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801712145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-19f56e2952aa2834e4b0fb267510afa53a4da490c0b6bf966dfdaf7face4a22a3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhiMEEqXwAkyWmAO24yQNGyotrVSpCBUYrUtyLqnaOLWToVsfAQkWXq9PgiFV2ZjO0n3_f_LneZeMXjNK4xtLKeWBTzn3KeNB6Isjr8MEFz6NInZ8eAfxqXdm7YI6qhckHe_9RRttSV-jUkVWYFlborQh9RuS0aZCM0e9wtoUGbkvlELjiAKWZLBuoC50aQmUORlsSjD5bvsxNeD25W77ZclMV3qp50Xm8CfMGmMdf0sewdRkvNt-DvdnXjFFcyg8904ULC1e7GfXex4OZv2RP5k-jPt3Ez8LemHts0SFEfIk5ADuJwJFSlXKozhkFBSEAYgcREIzmkapSqIoVzmoWEGGAjiHoOtdtb2V0esGbS0XujGlOyl5j7KYcSZCR_GWypwla1DJyhQrMBvJqPwxL1vz0pmXv-alcKGgDVkHl3M0f9X_pL4BkMmMGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801712145</pqid></control><display><type>article</type><title>Voros Coefficients for the Hypergeometric Differential Equations and Eynard–Orantin’s Topological Recursion: Part I—For the Weber Equation</title><source>Springer Nature</source><creator>Iwaki, Kohei ; Koike, Tatsuya ; Takei, Yumiko</creator><creatorcontrib>Iwaki, Kohei ; Koike, Tatsuya ; Takei, Yumiko</creatorcontrib><description>We develop the theory of quantization of spectral curves via the topological recursion. We formulate a quantization scheme of spectral curves which is not necessarily admissible in the sense of Bouchard and Eynard. The main result of this paper and the second part (Iwaki et al. in Voros coefficients for the hypergeometric differential equations and Eynard–Orantin’s topological recursion, part II: for the confluent family of hypergeometric equations, preprint; arXiv:1810.02946 ) establishes a relation between the Voros coefficients for the quantum curves and the free energy for spectral curves associated with the confluent family of Gauss hypergeometric differential equations. We focus on the Weber equation in this article and generalize the result for the other members of the confluent family in the second part. We also find explicit formulas of free energy for those spectral curves in terms of the Bernoulli numbers.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-022-01235-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Quantum Gravitation ; Coefficients ; Differential equations ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Free energy ; Hypergeometric functions ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Measurement ; Original Paper ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Theoretical ; Topology</subject><ispartof>Annales Henri Poincaré, 2023-04, Vol.24 (4), p.1305-1353</ispartof><rights>Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-19f56e2952aa2834e4b0fb267510afa53a4da490c0b6bf966dfdaf7face4a22a3</citedby><cites>FETCH-LOGICAL-c385t-19f56e2952aa2834e4b0fb267510afa53a4da490c0b6bf966dfdaf7face4a22a3</cites><orcidid>0000-0002-4884-1453</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Iwaki, Kohei</creatorcontrib><creatorcontrib>Koike, Tatsuya</creatorcontrib><creatorcontrib>Takei, Yumiko</creatorcontrib><title>Voros Coefficients for the Hypergeometric Differential Equations and Eynard–Orantin’s Topological Recursion: Part I—For the Weber Equation</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>We develop the theory of quantization of spectral curves via the topological recursion. We formulate a quantization scheme of spectral curves which is not necessarily admissible in the sense of Bouchard and Eynard. The main result of this paper and the second part (Iwaki et al. in Voros coefficients for the hypergeometric differential equations and Eynard–Orantin’s topological recursion, part II: for the confluent family of hypergeometric equations, preprint; arXiv:1810.02946 ) establishes a relation between the Voros coefficients for the quantum curves and the free energy for spectral curves associated with the confluent family of Gauss hypergeometric differential equations. We focus on the Weber equation in this article and generalize the result for the other members of the confluent family in the second part. We also find explicit formulas of free energy for those spectral curves in terms of the Bernoulli numbers.</description><subject>Classical and Quantum Gravitation</subject><subject>Coefficients</subject><subject>Differential equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Free energy</subject><subject>Hypergeometric functions</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Measurement</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><subject>Topology</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhiMEEqXwAkyWmAO24yQNGyotrVSpCBUYrUtyLqnaOLWToVsfAQkWXq9PgiFV2ZjO0n3_f_LneZeMXjNK4xtLKeWBTzn3KeNB6Isjr8MEFz6NInZ8eAfxqXdm7YI6qhckHe_9RRttSV-jUkVWYFlborQh9RuS0aZCM0e9wtoUGbkvlELjiAKWZLBuoC50aQmUORlsSjD5bvsxNeD25W77ZclMV3qp50Xm8CfMGmMdf0sewdRkvNt-DvdnXjFFcyg8904ULC1e7GfXex4OZv2RP5k-jPt3Ez8LemHts0SFEfIk5ADuJwJFSlXKozhkFBSEAYgcREIzmkapSqIoVzmoWEGGAjiHoOtdtb2V0esGbS0XujGlOyl5j7KYcSZCR_GWypwla1DJyhQrMBvJqPwxL1vz0pmXv-alcKGgDVkHl3M0f9X_pL4BkMmMGg</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Iwaki, Kohei</creator><creator>Koike, Tatsuya</creator><creator>Takei, Yumiko</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4884-1453</orcidid></search><sort><creationdate>20230401</creationdate><title>Voros Coefficients for the Hypergeometric Differential Equations and Eynard–Orantin’s Topological Recursion: Part I—For the Weber Equation</title><author>Iwaki, Kohei ; Koike, Tatsuya ; Takei, Yumiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-19f56e2952aa2834e4b0fb267510afa53a4da490c0b6bf966dfdaf7face4a22a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Coefficients</topic><topic>Differential equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Free energy</topic><topic>Hypergeometric functions</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Measurement</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwaki, Kohei</creatorcontrib><creatorcontrib>Koike, Tatsuya</creatorcontrib><creatorcontrib>Takei, Yumiko</creatorcontrib><collection>CrossRef</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwaki, Kohei</au><au>Koike, Tatsuya</au><au>Takei, Yumiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voros Coefficients for the Hypergeometric Differential Equations and Eynard–Orantin’s Topological Recursion: Part I—For the Weber Equation</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>24</volume><issue>4</issue><spage>1305</spage><epage>1353</epage><pages>1305-1353</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>We develop the theory of quantization of spectral curves via the topological recursion. We formulate a quantization scheme of spectral curves which is not necessarily admissible in the sense of Bouchard and Eynard. The main result of this paper and the second part (Iwaki et al. in Voros coefficients for the hypergeometric differential equations and Eynard–Orantin’s topological recursion, part II: for the confluent family of hypergeometric equations, preprint; arXiv:1810.02946 ) establishes a relation between the Voros coefficients for the quantum curves and the free energy for spectral curves associated with the confluent family of Gauss hypergeometric differential equations. We focus on the Weber equation in this article and generalize the result for the other members of the confluent family in the second part. We also find explicit formulas of free energy for those spectral curves in terms of the Bernoulli numbers.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-022-01235-4</doi><tpages>49</tpages><orcidid>https://orcid.org/0000-0002-4884-1453</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1424-0637
ispartof Annales Henri Poincaré, 2023-04, Vol.24 (4), p.1305-1353
issn 1424-0637
1424-0661
language eng
recordid cdi_proquest_journals_2801712145
source Springer Nature
subjects Classical and Quantum Gravitation
Coefficients
Differential equations
Dynamical Systems and Ergodic Theory
Elementary Particles
Free energy
Hypergeometric functions
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Measurement
Original Paper
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Relativity Theory
Theoretical
Topology
title Voros Coefficients for the Hypergeometric Differential Equations and Eynard–Orantin’s Topological Recursion: Part I—For the Weber Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voros%20Coefficients%20for%20the%20Hypergeometric%20Differential%20Equations%20and%20Eynard%E2%80%93Orantin%E2%80%99s%20Topological%20Recursion:%20Part%20I%E2%80%94For%20the%20Weber%20Equation&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Iwaki,%20Kohei&rft.date=2023-04-01&rft.volume=24&rft.issue=4&rft.spage=1305&rft.epage=1353&rft.pages=1305-1353&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-022-01235-4&rft_dat=%3Cproquest_cross%3E2801712145%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-19f56e2952aa2834e4b0fb267510afa53a4da490c0b6bf966dfdaf7face4a22a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2801712145&rft_id=info:pmid/&rfr_iscdi=true