Loading…

Sensorless Coestimation of Temperature and State-of-Charge for Lithium-Ion Batteries Based on a Coupled Electrothermal Model

Accurate estimations of the temperature and the state-of-charge (SOC) are of extreme importance for the safety of lithium-ion battery operation. Traditional battery temperature and SOC estimation methods often omit the relation between battery temperature and SOC, which may lead to significant error...

Full description

Saved in:
Bibliographic Details
Published in:International journal of energy research 2023-02, Vol.2023, p.1-18
Main Authors: Bai, Wenyuan, Zhang, Xinhui, Gao, Zhen, Xie, Shuyu, Peng, Ke, Chen, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate estimations of the temperature and the state-of-charge (SOC) are of extreme importance for the safety of lithium-ion battery operation. Traditional battery temperature and SOC estimation methods often omit the relation between battery temperature and SOC, which may lead to significant errors in the estimations. This study presents a coupled electrothermal battery model and a coestimation method for simultaneously estimating the temperature and SOC of lithium-ion batteries. The coestimation method is performed by a coupled model-based dual extended Kalman filter (DEKF). The coupled estimators utilizing electrochemical impedance spectroscopy (EIS) measurements, rather than utilizing direct battery surface measurements, are adopted to estimate the battery temperature and SOC, respectively. The information being exchanged between the temperature estimator and the SOC estimator effectively improves the estimation accuracy. Extensive experiments show that, in contrast with the EKF-based separate estimation method, the DEKF-based coestimation method is more favorable in reducing errors for estimating both the temperature and SOC even if the battery core temperature has increased by 17°C or more during the process of test.
ISSN:0363-907X
1099-114X
DOI:10.1155/2023/4021256