Loading…
Biodiesel Production through Electrolysis Using an Ionic Liquid, 1-Ethyl-3-Methylimidazolium Chloride as a Supporting Electrolyte
Electrolysis is a promising approach for biodiesel production. However, low electrical conductivity of a reaction mixture results in a low reaction rate. Thus, this study developed a novel catalyst-free electrolysis process using an ionic liquid as a supporting electrolyte for biodiesel production....
Saved in:
Published in: | International journal of energy research 2023-03, Vol.2023, p.1-11 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-c700499f34f4ac4d844ae23be4bfed59f1afd113abc9fa531e35455338ac91de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-c700499f34f4ac4d844ae23be4bfed59f1afd113abc9fa531e35455338ac91de3 |
container_end_page | 11 |
container_issue | |
container_start_page | 1 |
container_title | International journal of energy research |
container_volume | 2023 |
creator | Aregawi, Beyene Hagos Nguyen, Hoang Chinh Fu, Chun-Chong Ong, Hwai Chyuan Barrow, Colin J. Su, Chia-Hung Wu, Shao-Jung Juan, Horng-Yi Wang, Fu-Ming |
description | Electrolysis is a promising approach for biodiesel production. However, low electrical conductivity of a reaction mixture results in a low reaction rate. Thus, this study developed a novel catalyst-free electrolysis process using an ionic liquid as a supporting electrolyte for biodiesel production. Various ionic liquids were assessed, and 1-ethyl-3-methylimidazolium chloride ([Emim]Cl) exhibited the highest electrical conductivity (4.59 mS/cm) and the best electrolytic performance for transesterification. Electrolysis in the presence of [Emim]Cl was subsequently optimized using response surface methodology to maximize biodiesel yield. A maximum biodiesel yield of 97.76% was obtained under the following optimal reaction conditions: electrolysis voltage, 19.42 V; [Emim]Cl amount, 4.43% (w/w); water content, 1.62% (w/w); methanol to oil molar ratio, 26.38 : 1; and reaction time, 1 h. Notably, [Emim]Cl could be efficiently reused for at least three cycles with a corresponding biodiesel yield of 94.81%. Moreover, the properties of the synthesized biodiesel complied with EN and ASTM standards. The findings of this study indicate that catalyst-free electrolysis using [Emim]Cl as a supporting electrolyte is an eco-friendly and efficient method for biodiesel production. |
doi_str_mv | 10.1155/2023/4719589 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2802486090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802486090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-c700499f34f4ac4d844ae23be4bfed59f1afd113abc9fa531e35455338ac91de3</originalsourceid><addsrcrecordid>eNp9kEFLwzAUgIMoOKc3f0DAo8YlTbI2Rx1TBxMFHexWsiRdM7qmS1Jk3vzntmx49PQevI_vwQfANcH3hHA-SnBCRywlgmfiBAwIFgIRwpanYIDpmCKB0-U5uAhhg3F3I-kA_Dxap60JpoLv3ulWRetqGEvv2nUJp5VR0btqH2yAi2DrNZQ1nLnaKji3u9bqO0jQNJb7ClH0avrFbq2W366y7RZOysp5qw2UAUr40TaN87G3_ImjuQRnhayCuTrOIVg8TT8nL2j-9jybPMyRohhHpFKMmRAFZQWTiumMMWkSujJsVRjNRUFkoQmhcqVEITklhnLGOaWZVIJoQ4fg5uBtvNu1JsR841pfdy_zJMMJy8ZY4I66O1DKuxC8KfLG2630-5zgvI-c95HzY-QOvz3gpa21_LL_07_9jH42</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802486090</pqid></control><display><type>article</type><title>Biodiesel Production through Electrolysis Using an Ionic Liquid, 1-Ethyl-3-Methylimidazolium Chloride as a Supporting Electrolyte</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Aregawi, Beyene Hagos ; Nguyen, Hoang Chinh ; Fu, Chun-Chong ; Ong, Hwai Chyuan ; Barrow, Colin J. ; Su, Chia-Hung ; Wu, Shao-Jung ; Juan, Horng-Yi ; Wang, Fu-Ming</creator><contributor>Basumatary, Sanjay ; Sanjay Basumatary</contributor><creatorcontrib>Aregawi, Beyene Hagos ; Nguyen, Hoang Chinh ; Fu, Chun-Chong ; Ong, Hwai Chyuan ; Barrow, Colin J. ; Su, Chia-Hung ; Wu, Shao-Jung ; Juan, Horng-Yi ; Wang, Fu-Ming ; Basumatary, Sanjay ; Sanjay Basumatary</creatorcontrib><description>Electrolysis is a promising approach for biodiesel production. However, low electrical conductivity of a reaction mixture results in a low reaction rate. Thus, this study developed a novel catalyst-free electrolysis process using an ionic liquid as a supporting electrolyte for biodiesel production. Various ionic liquids were assessed, and 1-ethyl-3-methylimidazolium chloride ([Emim]Cl) exhibited the highest electrical conductivity (4.59 mS/cm) and the best electrolytic performance for transesterification. Electrolysis in the presence of [Emim]Cl was subsequently optimized using response surface methodology to maximize biodiesel yield. A maximum biodiesel yield of 97.76% was obtained under the following optimal reaction conditions: electrolysis voltage, 19.42 V; [Emim]Cl amount, 4.43% (w/w); water content, 1.62% (w/w); methanol to oil molar ratio, 26.38 : 1; and reaction time, 1 h. Notably, [Emim]Cl could be efficiently reused for at least three cycles with a corresponding biodiesel yield of 94.81%. Moreover, the properties of the synthesized biodiesel complied with EN and ASTM standards. The findings of this study indicate that catalyst-free electrolysis using [Emim]Cl as a supporting electrolyte is an eco-friendly and efficient method for biodiesel production.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2023/4719589</identifier><language>eng</language><publisher>Bognor Regis: Hindawi</publisher><subject>Alternative energy sources ; Biodiesel fuels ; Biofuels ; Catalysts ; Chlorides ; Diesel ; Electrical conductivity ; Electrical resistivity ; Electrolysis ; Electrolytes ; Energy resources ; Ionic liquids ; Liquids ; Moisture content ; Response surface methodology ; Transesterification ; Ultrasonic imaging ; Variables ; Variance analysis ; Water content ; Yields</subject><ispartof>International journal of energy research, 2023-03, Vol.2023, p.1-11</ispartof><rights>Copyright © 2023 Beyene Hagos Aregawi et al.</rights><rights>Copyright © 2023 Beyene Hagos Aregawi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-c700499f34f4ac4d844ae23be4bfed59f1afd113abc9fa531e35455338ac91de3</citedby><cites>FETCH-LOGICAL-c300t-c700499f34f4ac4d844ae23be4bfed59f1afd113abc9fa531e35455338ac91de3</cites><orcidid>0000-0002-9411-0790 ; 0000-0002-4203-5143 ; 0000-0002-2153-7267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2802486090/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2802486090?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Basumatary, Sanjay</contributor><contributor>Sanjay Basumatary</contributor><creatorcontrib>Aregawi, Beyene Hagos</creatorcontrib><creatorcontrib>Nguyen, Hoang Chinh</creatorcontrib><creatorcontrib>Fu, Chun-Chong</creatorcontrib><creatorcontrib>Ong, Hwai Chyuan</creatorcontrib><creatorcontrib>Barrow, Colin J.</creatorcontrib><creatorcontrib>Su, Chia-Hung</creatorcontrib><creatorcontrib>Wu, Shao-Jung</creatorcontrib><creatorcontrib>Juan, Horng-Yi</creatorcontrib><creatorcontrib>Wang, Fu-Ming</creatorcontrib><title>Biodiesel Production through Electrolysis Using an Ionic Liquid, 1-Ethyl-3-Methylimidazolium Chloride as a Supporting Electrolyte</title><title>International journal of energy research</title><description>Electrolysis is a promising approach for biodiesel production. However, low electrical conductivity of a reaction mixture results in a low reaction rate. Thus, this study developed a novel catalyst-free electrolysis process using an ionic liquid as a supporting electrolyte for biodiesel production. Various ionic liquids were assessed, and 1-ethyl-3-methylimidazolium chloride ([Emim]Cl) exhibited the highest electrical conductivity (4.59 mS/cm) and the best electrolytic performance for transesterification. Electrolysis in the presence of [Emim]Cl was subsequently optimized using response surface methodology to maximize biodiesel yield. A maximum biodiesel yield of 97.76% was obtained under the following optimal reaction conditions: electrolysis voltage, 19.42 V; [Emim]Cl amount, 4.43% (w/w); water content, 1.62% (w/w); methanol to oil molar ratio, 26.38 : 1; and reaction time, 1 h. Notably, [Emim]Cl could be efficiently reused for at least three cycles with a corresponding biodiesel yield of 94.81%. Moreover, the properties of the synthesized biodiesel complied with EN and ASTM standards. The findings of this study indicate that catalyst-free electrolysis using [Emim]Cl as a supporting electrolyte is an eco-friendly and efficient method for biodiesel production.</description><subject>Alternative energy sources</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Catalysts</subject><subject>Chlorides</subject><subject>Diesel</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Energy resources</subject><subject>Ionic liquids</subject><subject>Liquids</subject><subject>Moisture content</subject><subject>Response surface methodology</subject><subject>Transesterification</subject><subject>Ultrasonic imaging</subject><subject>Variables</subject><subject>Variance analysis</subject><subject>Water content</subject><subject>Yields</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kEFLwzAUgIMoOKc3f0DAo8YlTbI2Rx1TBxMFHexWsiRdM7qmS1Jk3vzntmx49PQevI_vwQfANcH3hHA-SnBCRywlgmfiBAwIFgIRwpanYIDpmCKB0-U5uAhhg3F3I-kA_Dxap60JpoLv3ulWRetqGEvv2nUJp5VR0btqH2yAi2DrNZQ1nLnaKji3u9bqO0jQNJb7ClH0avrFbq2W366y7RZOysp5qw2UAUr40TaN87G3_ImjuQRnhayCuTrOIVg8TT8nL2j-9jybPMyRohhHpFKMmRAFZQWTiumMMWkSujJsVRjNRUFkoQmhcqVEITklhnLGOaWZVIJoQ4fg5uBtvNu1JsR841pfdy_zJMMJy8ZY4I66O1DKuxC8KfLG2630-5zgvI-c95HzY-QOvz3gpa21_LL_07_9jH42</recordid><startdate>20230331</startdate><enddate>20230331</enddate><creator>Aregawi, Beyene Hagos</creator><creator>Nguyen, Hoang Chinh</creator><creator>Fu, Chun-Chong</creator><creator>Ong, Hwai Chyuan</creator><creator>Barrow, Colin J.</creator><creator>Su, Chia-Hung</creator><creator>Wu, Shao-Jung</creator><creator>Juan, Horng-Yi</creator><creator>Wang, Fu-Ming</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9411-0790</orcidid><orcidid>https://orcid.org/0000-0002-4203-5143</orcidid><orcidid>https://orcid.org/0000-0002-2153-7267</orcidid></search><sort><creationdate>20230331</creationdate><title>Biodiesel Production through Electrolysis Using an Ionic Liquid, 1-Ethyl-3-Methylimidazolium Chloride as a Supporting Electrolyte</title><author>Aregawi, Beyene Hagos ; Nguyen, Hoang Chinh ; Fu, Chun-Chong ; Ong, Hwai Chyuan ; Barrow, Colin J. ; Su, Chia-Hung ; Wu, Shao-Jung ; Juan, Horng-Yi ; Wang, Fu-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-c700499f34f4ac4d844ae23be4bfed59f1afd113abc9fa531e35455338ac91de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy sources</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Catalysts</topic><topic>Chlorides</topic><topic>Diesel</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Energy resources</topic><topic>Ionic liquids</topic><topic>Liquids</topic><topic>Moisture content</topic><topic>Response surface methodology</topic><topic>Transesterification</topic><topic>Ultrasonic imaging</topic><topic>Variables</topic><topic>Variance analysis</topic><topic>Water content</topic><topic>Yields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aregawi, Beyene Hagos</creatorcontrib><creatorcontrib>Nguyen, Hoang Chinh</creatorcontrib><creatorcontrib>Fu, Chun-Chong</creatorcontrib><creatorcontrib>Ong, Hwai Chyuan</creatorcontrib><creatorcontrib>Barrow, Colin J.</creatorcontrib><creatorcontrib>Su, Chia-Hung</creatorcontrib><creatorcontrib>Wu, Shao-Jung</creatorcontrib><creatorcontrib>Juan, Horng-Yi</creatorcontrib><creatorcontrib>Wang, Fu-Ming</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aregawi, Beyene Hagos</au><au>Nguyen, Hoang Chinh</au><au>Fu, Chun-Chong</au><au>Ong, Hwai Chyuan</au><au>Barrow, Colin J.</au><au>Su, Chia-Hung</au><au>Wu, Shao-Jung</au><au>Juan, Horng-Yi</au><au>Wang, Fu-Ming</au><au>Basumatary, Sanjay</au><au>Sanjay Basumatary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodiesel Production through Electrolysis Using an Ionic Liquid, 1-Ethyl-3-Methylimidazolium Chloride as a Supporting Electrolyte</atitle><jtitle>International journal of energy research</jtitle><date>2023-03-31</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Electrolysis is a promising approach for biodiesel production. However, low electrical conductivity of a reaction mixture results in a low reaction rate. Thus, this study developed a novel catalyst-free electrolysis process using an ionic liquid as a supporting electrolyte for biodiesel production. Various ionic liquids were assessed, and 1-ethyl-3-methylimidazolium chloride ([Emim]Cl) exhibited the highest electrical conductivity (4.59 mS/cm) and the best electrolytic performance for transesterification. Electrolysis in the presence of [Emim]Cl was subsequently optimized using response surface methodology to maximize biodiesel yield. A maximum biodiesel yield of 97.76% was obtained under the following optimal reaction conditions: electrolysis voltage, 19.42 V; [Emim]Cl amount, 4.43% (w/w); water content, 1.62% (w/w); methanol to oil molar ratio, 26.38 : 1; and reaction time, 1 h. Notably, [Emim]Cl could be efficiently reused for at least three cycles with a corresponding biodiesel yield of 94.81%. Moreover, the properties of the synthesized biodiesel complied with EN and ASTM standards. The findings of this study indicate that catalyst-free electrolysis using [Emim]Cl as a supporting electrolyte is an eco-friendly and efficient method for biodiesel production.</abstract><cop>Bognor Regis</cop><pub>Hindawi</pub><doi>10.1155/2023/4719589</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9411-0790</orcidid><orcidid>https://orcid.org/0000-0002-4203-5143</orcidid><orcidid>https://orcid.org/0000-0002-2153-7267</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2023-03, Vol.2023, p.1-11 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2802486090 |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest) |
subjects | Alternative energy sources Biodiesel fuels Biofuels Catalysts Chlorides Diesel Electrical conductivity Electrical resistivity Electrolysis Electrolytes Energy resources Ionic liquids Liquids Moisture content Response surface methodology Transesterification Ultrasonic imaging Variables Variance analysis Water content Yields |
title | Biodiesel Production through Electrolysis Using an Ionic Liquid, 1-Ethyl-3-Methylimidazolium Chloride as a Supporting Electrolyte |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodiesel%20Production%20through%20Electrolysis%20Using%20an%20Ionic%20Liquid,%201-Ethyl-3-Methylimidazolium%20Chloride%20as%20a%20Supporting%20Electrolyte&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Aregawi,%20Beyene%20Hagos&rft.date=2023-03-31&rft.volume=2023&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2023/4719589&rft_dat=%3Cproquest_cross%3E2802486090%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-c700499f34f4ac4d844ae23be4bfed59f1afd113abc9fa531e35455338ac91de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2802486090&rft_id=info:pmid/&rfr_iscdi=true |