Loading…

Almost ordinary Abelian surfaces over global function fields with application to integral points

Let \(A\) be a non-isotrivial almost ordinary Abelian surface with possibly bad reductions over a global function field of odd characteristic \(p\). Suppose \(\Delta\) is an infinite set of positive integers, such that \(\left(\frac{m}{p}\right)=1\) for \(\forall m\in \Delta\). If \(A\) doesn't...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-04
Main Author: Jiang, Ruofan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jiang, Ruofan
description Let \(A\) be a non-isotrivial almost ordinary Abelian surface with possibly bad reductions over a global function field of odd characteristic \(p\). Suppose \(\Delta\) is an infinite set of positive integers, such that \(\left(\frac{m}{p}\right)=1\) for \(\forall m\in \Delta\). If \(A\) doesn't admit any global real multiplication, we prove the existence of infinitely many places modulo which the reduction of \(A\) has endomorphism ring containing \(\mathbb{Z}[x]/(x^2-m)\) for some \(m\in \Delta\). This generalizes the \(S\)-integrality conjecture for elliptic curves over number fields, as proved in arXiv:math/0509485, to the setting of Abelian surfaces over global function fields. As a corollary, we show that there are infinitely many places modulo which \(A\) is not simple, generalizing the main result of arXiv:1812.11679 to the non-ordinary case.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2802666642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802666642</sourcerecordid><originalsourceid>FETCH-proquest_journals_28026666423</originalsourceid><addsrcrecordid>eNqNjkEKwjAURIMgWLR3-OC6UJNWuy2ieAD3NbZpTYn5MT9VvL1BPICzmWHmLWbGEi7EJqsKzhcsJRrzPOfbHS9LkbBLbe5IAdB32kr_hvqqjJYWaPK9bBUBPpWHweBVGugn2waNFnqtTEfw0uEG0jmjW_ntA4K2QQ0-wg5jpBWb99KQSn--ZOvj4bw_Zc7jY1IUmhEnb-PU8Cr-iiq4-I_6AGFrRck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802666642</pqid></control><display><type>article</type><title>Almost ordinary Abelian surfaces over global function fields with application to integral points</title><source>Publicly Available Content (ProQuest)</source><creator>Jiang, Ruofan</creator><creatorcontrib>Jiang, Ruofan</creatorcontrib><description>Let \(A\) be a non-isotrivial almost ordinary Abelian surface with possibly bad reductions over a global function field of odd characteristic \(p\). Suppose \(\Delta\) is an infinite set of positive integers, such that \(\left(\frac{m}{p}\right)=1\) for \(\forall m\in \Delta\). If \(A\) doesn't admit any global real multiplication, we prove the existence of infinitely many places modulo which the reduction of \(A\) has endomorphism ring containing \(\mathbb{Z}[x]/(x^2-m)\) for some \(m\in \Delta\). This generalizes the \(S\)-integrality conjecture for elliptic curves over number fields, as proved in arXiv:math/0509485, to the setting of Abelian surfaces over global function fields. As a corollary, we show that there are infinitely many places modulo which \(A\) is not simple, generalizing the main result of arXiv:1812.11679 to the non-ordinary case.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curves ; Number theory</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2802666642?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Jiang, Ruofan</creatorcontrib><title>Almost ordinary Abelian surfaces over global function fields with application to integral points</title><title>arXiv.org</title><description>Let \(A\) be a non-isotrivial almost ordinary Abelian surface with possibly bad reductions over a global function field of odd characteristic \(p\). Suppose \(\Delta\) is an infinite set of positive integers, such that \(\left(\frac{m}{p}\right)=1\) for \(\forall m\in \Delta\). If \(A\) doesn't admit any global real multiplication, we prove the existence of infinitely many places modulo which the reduction of \(A\) has endomorphism ring containing \(\mathbb{Z}[x]/(x^2-m)\) for some \(m\in \Delta\). This generalizes the \(S\)-integrality conjecture for elliptic curves over number fields, as proved in arXiv:math/0509485, to the setting of Abelian surfaces over global function fields. As a corollary, we show that there are infinitely many places modulo which \(A\) is not simple, generalizing the main result of arXiv:1812.11679 to the non-ordinary case.</description><subject>Curves</subject><subject>Number theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjkEKwjAURIMgWLR3-OC6UJNWuy2ieAD3NbZpTYn5MT9VvL1BPICzmWHmLWbGEi7EJqsKzhcsJRrzPOfbHS9LkbBLbe5IAdB32kr_hvqqjJYWaPK9bBUBPpWHweBVGugn2waNFnqtTEfw0uEG0jmjW_ntA4K2QQ0-wg5jpBWb99KQSn--ZOvj4bw_Zc7jY1IUmhEnb-PU8Cr-iiq4-I_6AGFrRck</recordid><startdate>20230416</startdate><enddate>20230416</enddate><creator>Jiang, Ruofan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230416</creationdate><title>Almost ordinary Abelian surfaces over global function fields with application to integral points</title><author>Jiang, Ruofan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28026666423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Curves</topic><topic>Number theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Ruofan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Ruofan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Almost ordinary Abelian surfaces over global function fields with application to integral points</atitle><jtitle>arXiv.org</jtitle><date>2023-04-16</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Let \(A\) be a non-isotrivial almost ordinary Abelian surface with possibly bad reductions over a global function field of odd characteristic \(p\). Suppose \(\Delta\) is an infinite set of positive integers, such that \(\left(\frac{m}{p}\right)=1\) for \(\forall m\in \Delta\). If \(A\) doesn't admit any global real multiplication, we prove the existence of infinitely many places modulo which the reduction of \(A\) has endomorphism ring containing \(\mathbb{Z}[x]/(x^2-m)\) for some \(m\in \Delta\). This generalizes the \(S\)-integrality conjecture for elliptic curves over number fields, as proved in arXiv:math/0509485, to the setting of Abelian surfaces over global function fields. As a corollary, we show that there are infinitely many places modulo which \(A\) is not simple, generalizing the main result of arXiv:1812.11679 to the non-ordinary case.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2802666642
source Publicly Available Content (ProQuest)
subjects Curves
Number theory
title Almost ordinary Abelian surfaces over global function fields with application to integral points
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Almost%20ordinary%20Abelian%20surfaces%20over%20global%20function%20fields%20with%20application%20to%20integral%20points&rft.jtitle=arXiv.org&rft.au=Jiang,%20Ruofan&rft.date=2023-04-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2802666642%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28026666423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2802666642&rft_id=info:pmid/&rfr_iscdi=true