Loading…
Intelligent identification of radar active jamming type based on multi-domain information fusion
Feature fusion is beneficial to improving the recognition rate of radar active jamming types, which usually costs a lot of computation and network complexity, however. Contrapose the disadvantage of low computational power and resource allocation of missile-borne radar, this paper introduces data en...
Saved in:
Published in: | Journal of physics. Conference series 2023-04, Vol.2480 (1), p.12015 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2745-3199f974cc11d3664c2f3a57e6ba419da891541e4171af8e0ad3a994742015843 |
container_end_page | |
container_issue | 1 |
container_start_page | 12015 |
container_title | Journal of physics. Conference series |
container_volume | 2480 |
creator | Cao, Fei Gao, Zejun He, Chuan Feng, Xiaowei Xu, Jianfeng Xue, Chunling Qin, Jianqiang |
description | Feature fusion is beneficial to improving the recognition rate of radar active jamming types, which usually costs a lot of computation and network complexity, however. Contrapose the disadvantage of low computational power and resource allocation of missile-borne radar, this paper introduces data enhancement theory into the feature fusion method and proposes an intelligent identification model of radar active jamming type based on multi-domain information fusion. The model first analyzes the time-frequency domain features of the signal and one-dimensional features such as its real part, imaginary part, frequency spectrum, and power spectrum, and then uses the Cutout&Patchup algorithm to fuse the one-dimensional and two-dimensional features into a new multi-domain information fusion matrix as the input of the recognition network. The simulation results show that this method greatly improves the recognition accuracy of active jamming types. Under the WideResNet28_2 classifier, the classification accuracy of active interference type reaches 88.06%, which is 0.79% higher than that before fusion. |
doi_str_mv | 10.1088/1742-6596/2480/1/012015 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2802958571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802958571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2745-3199f974cc11d3664c2f3a57e6ba419da891541e4171af8e0ad3a994742015843</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm1Ok7bJpQw_JgMF9TpmbTIy2qYmnbB_b0pFEQRzkRPI-5zDeRA6B3IFhPMUSpYlRS6KNGOcpJASyAjkB2j2_XP4_eb8GJ2EsCWExlPO0NuyG3TT2I3uBmzreFtjKzVY12FnsFe18lhVg_3QeKva1nYbPOx7jdcq6BrHVLtrBpvUrlW2w7YzzrcTbnYhllN0ZFQT9NlXnaPX25uXxX2yerxbLq5XSZWVLE8oCGFEyaoKoKZFwarMUJWXulgrBqJWXEDOQDMoQRmuiaqpEoLFteKynNE5upj69t6973QY5NbtfBdHyoyTTOQ8LyGmyilVeReC10b23rbK7yUQOeqUoyg5SpOjTgly0hlJOpHW9T-t_6cu_6AenhbPv4Oyrw39BGIthKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802958571</pqid></control><display><type>article</type><title>Intelligent identification of radar active jamming type based on multi-domain information fusion</title><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Cao, Fei ; Gao, Zejun ; He, Chuan ; Feng, Xiaowei ; Xu, Jianfeng ; Xue, Chunling ; Qin, Jianqiang</creator><creatorcontrib>Cao, Fei ; Gao, Zejun ; He, Chuan ; Feng, Xiaowei ; Xu, Jianfeng ; Xue, Chunling ; Qin, Jianqiang</creatorcontrib><description>Feature fusion is beneficial to improving the recognition rate of radar active jamming types, which usually costs a lot of computation and network complexity, however. Contrapose the disadvantage of low computational power and resource allocation of missile-borne radar, this paper introduces data enhancement theory into the feature fusion method and proposes an intelligent identification model of radar active jamming type based on multi-domain information fusion. The model first analyzes the time-frequency domain features of the signal and one-dimensional features such as its real part, imaginary part, frequency spectrum, and power spectrum, and then uses the Cutout&Patchup algorithm to fuse the one-dimensional and two-dimensional features into a new multi-domain information fusion matrix as the input of the recognition network. The simulation results show that this method greatly improves the recognition accuracy of active jamming types. Under the WideResNet28_2 classifier, the classification accuracy of active interference type reaches 88.06%, which is 0.79% higher than that before fusion.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2480/1/012015</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accuracy ; Algorithms ; Data integration ; Frequency spectrum ; Jamming ; Physics ; Radar ; Resource allocation</subject><ispartof>Journal of physics. Conference series, 2023-04, Vol.2480 (1), p.12015</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2745-3199f974cc11d3664c2f3a57e6ba419da891541e4171af8e0ad3a994742015843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2802958571?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Cao, Fei</creatorcontrib><creatorcontrib>Gao, Zejun</creatorcontrib><creatorcontrib>He, Chuan</creatorcontrib><creatorcontrib>Feng, Xiaowei</creatorcontrib><creatorcontrib>Xu, Jianfeng</creatorcontrib><creatorcontrib>Xue, Chunling</creatorcontrib><creatorcontrib>Qin, Jianqiang</creatorcontrib><title>Intelligent identification of radar active jamming type based on multi-domain information fusion</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Feature fusion is beneficial to improving the recognition rate of radar active jamming types, which usually costs a lot of computation and network complexity, however. Contrapose the disadvantage of low computational power and resource allocation of missile-borne radar, this paper introduces data enhancement theory into the feature fusion method and proposes an intelligent identification model of radar active jamming type based on multi-domain information fusion. The model first analyzes the time-frequency domain features of the signal and one-dimensional features such as its real part, imaginary part, frequency spectrum, and power spectrum, and then uses the Cutout&Patchup algorithm to fuse the one-dimensional and two-dimensional features into a new multi-domain information fusion matrix as the input of the recognition network. The simulation results show that this method greatly improves the recognition accuracy of active jamming types. Under the WideResNet28_2 classifier, the classification accuracy of active interference type reaches 88.06%, which is 0.79% higher than that before fusion.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Data integration</subject><subject>Frequency spectrum</subject><subject>Jamming</subject><subject>Physics</subject><subject>Radar</subject><subject>Resource allocation</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm1Ok7bJpQw_JgMF9TpmbTIy2qYmnbB_b0pFEQRzkRPI-5zDeRA6B3IFhPMUSpYlRS6KNGOcpJASyAjkB2j2_XP4_eb8GJ2EsCWExlPO0NuyG3TT2I3uBmzreFtjKzVY12FnsFe18lhVg_3QeKva1nYbPOx7jdcq6BrHVLtrBpvUrlW2w7YzzrcTbnYhllN0ZFQT9NlXnaPX25uXxX2yerxbLq5XSZWVLE8oCGFEyaoKoKZFwarMUJWXulgrBqJWXEDOQDMoQRmuiaqpEoLFteKynNE5upj69t6973QY5NbtfBdHyoyTTOQ8LyGmyilVeReC10b23rbK7yUQOeqUoyg5SpOjTgly0hlJOpHW9T-t_6cu_6AenhbPv4Oyrw39BGIthKE</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Cao, Fei</creator><creator>Gao, Zejun</creator><creator>He, Chuan</creator><creator>Feng, Xiaowei</creator><creator>Xu, Jianfeng</creator><creator>Xue, Chunling</creator><creator>Qin, Jianqiang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230401</creationdate><title>Intelligent identification of radar active jamming type based on multi-domain information fusion</title><author>Cao, Fei ; Gao, Zejun ; He, Chuan ; Feng, Xiaowei ; Xu, Jianfeng ; Xue, Chunling ; Qin, Jianqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2745-3199f974cc11d3664c2f3a57e6ba419da891541e4171af8e0ad3a994742015843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Data integration</topic><topic>Frequency spectrum</topic><topic>Jamming</topic><topic>Physics</topic><topic>Radar</topic><topic>Resource allocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Fei</creatorcontrib><creatorcontrib>Gao, Zejun</creatorcontrib><creatorcontrib>He, Chuan</creatorcontrib><creatorcontrib>Feng, Xiaowei</creatorcontrib><creatorcontrib>Xu, Jianfeng</creatorcontrib><creatorcontrib>Xue, Chunling</creatorcontrib><creatorcontrib>Qin, Jianqiang</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Fei</au><au>Gao, Zejun</au><au>He, Chuan</au><au>Feng, Xiaowei</au><au>Xu, Jianfeng</au><au>Xue, Chunling</au><au>Qin, Jianqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent identification of radar active jamming type based on multi-domain information fusion</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>2480</volume><issue>1</issue><spage>12015</spage><pages>12015-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Feature fusion is beneficial to improving the recognition rate of radar active jamming types, which usually costs a lot of computation and network complexity, however. Contrapose the disadvantage of low computational power and resource allocation of missile-borne radar, this paper introduces data enhancement theory into the feature fusion method and proposes an intelligent identification model of radar active jamming type based on multi-domain information fusion. The model first analyzes the time-frequency domain features of the signal and one-dimensional features such as its real part, imaginary part, frequency spectrum, and power spectrum, and then uses the Cutout&Patchup algorithm to fuse the one-dimensional and two-dimensional features into a new multi-domain information fusion matrix as the input of the recognition network. The simulation results show that this method greatly improves the recognition accuracy of active jamming types. Under the WideResNet28_2 classifier, the classification accuracy of active interference type reaches 88.06%, which is 0.79% higher than that before fusion.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2480/1/012015</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2023-04, Vol.2480 (1), p.12015 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2802958571 |
source | Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry |
subjects | Accuracy Algorithms Data integration Frequency spectrum Jamming Physics Radar Resource allocation |
title | Intelligent identification of radar active jamming type based on multi-domain information fusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T17%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20identification%20of%20radar%20active%20jamming%20type%20based%20on%20multi-domain%20information%20fusion&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Cao,%20Fei&rft.date=2023-04-01&rft.volume=2480&rft.issue=1&rft.spage=12015&rft.pages=12015-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2480/1/012015&rft_dat=%3Cproquest_iop_j%3E2802958571%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2745-3199f974cc11d3664c2f3a57e6ba419da891541e4171af8e0ad3a994742015843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2802958571&rft_id=info:pmid/&rfr_iscdi=true |