Loading…

Intelligent identification of radar active jamming type based on multi-domain information fusion

Feature fusion is beneficial to improving the recognition rate of radar active jamming types, which usually costs a lot of computation and network complexity, however. Contrapose the disadvantage of low computational power and resource allocation of missile-borne radar, this paper introduces data en...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2023-04, Vol.2480 (1), p.12015
Main Authors: Cao, Fei, Gao, Zejun, He, Chuan, Feng, Xiaowei, Xu, Jianfeng, Xue, Chunling, Qin, Jianqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2745-3199f974cc11d3664c2f3a57e6ba419da891541e4171af8e0ad3a994742015843
container_end_page
container_issue 1
container_start_page 12015
container_title Journal of physics. Conference series
container_volume 2480
creator Cao, Fei
Gao, Zejun
He, Chuan
Feng, Xiaowei
Xu, Jianfeng
Xue, Chunling
Qin, Jianqiang
description Feature fusion is beneficial to improving the recognition rate of radar active jamming types, which usually costs a lot of computation and network complexity, however. Contrapose the disadvantage of low computational power and resource allocation of missile-borne radar, this paper introduces data enhancement theory into the feature fusion method and proposes an intelligent identification model of radar active jamming type based on multi-domain information fusion. The model first analyzes the time-frequency domain features of the signal and one-dimensional features such as its real part, imaginary part, frequency spectrum, and power spectrum, and then uses the Cutout&Patchup algorithm to fuse the one-dimensional and two-dimensional features into a new multi-domain information fusion matrix as the input of the recognition network. The simulation results show that this method greatly improves the recognition accuracy of active jamming types. Under the WideResNet28_2 classifier, the classification accuracy of active interference type reaches 88.06%, which is 0.79% higher than that before fusion.
doi_str_mv 10.1088/1742-6596/2480/1/012015
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2802958571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802958571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2745-3199f974cc11d3664c2f3a57e6ba419da891541e4171af8e0ad3a994742015843</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm1Ok7bJpQw_JgMF9TpmbTIy2qYmnbB_b0pFEQRzkRPI-5zDeRA6B3IFhPMUSpYlRS6KNGOcpJASyAjkB2j2_XP4_eb8GJ2EsCWExlPO0NuyG3TT2I3uBmzreFtjKzVY12FnsFe18lhVg_3QeKva1nYbPOx7jdcq6BrHVLtrBpvUrlW2w7YzzrcTbnYhllN0ZFQT9NlXnaPX25uXxX2yerxbLq5XSZWVLE8oCGFEyaoKoKZFwarMUJWXulgrBqJWXEDOQDMoQRmuiaqpEoLFteKynNE5upj69t6973QY5NbtfBdHyoyTTOQ8LyGmyilVeReC10b23rbK7yUQOeqUoyg5SpOjTgly0hlJOpHW9T-t_6cu_6AenhbPv4Oyrw39BGIthKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802958571</pqid></control><display><type>article</type><title>Intelligent identification of radar active jamming type based on multi-domain information fusion</title><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Cao, Fei ; Gao, Zejun ; He, Chuan ; Feng, Xiaowei ; Xu, Jianfeng ; Xue, Chunling ; Qin, Jianqiang</creator><creatorcontrib>Cao, Fei ; Gao, Zejun ; He, Chuan ; Feng, Xiaowei ; Xu, Jianfeng ; Xue, Chunling ; Qin, Jianqiang</creatorcontrib><description>Feature fusion is beneficial to improving the recognition rate of radar active jamming types, which usually costs a lot of computation and network complexity, however. Contrapose the disadvantage of low computational power and resource allocation of missile-borne radar, this paper introduces data enhancement theory into the feature fusion method and proposes an intelligent identification model of radar active jamming type based on multi-domain information fusion. The model first analyzes the time-frequency domain features of the signal and one-dimensional features such as its real part, imaginary part, frequency spectrum, and power spectrum, and then uses the Cutout&amp;Patchup algorithm to fuse the one-dimensional and two-dimensional features into a new multi-domain information fusion matrix as the input of the recognition network. The simulation results show that this method greatly improves the recognition accuracy of active jamming types. Under the WideResNet28_2 classifier, the classification accuracy of active interference type reaches 88.06%, which is 0.79% higher than that before fusion.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2480/1/012015</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accuracy ; Algorithms ; Data integration ; Frequency spectrum ; Jamming ; Physics ; Radar ; Resource allocation</subject><ispartof>Journal of physics. Conference series, 2023-04, Vol.2480 (1), p.12015</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2745-3199f974cc11d3664c2f3a57e6ba419da891541e4171af8e0ad3a994742015843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2802958571?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Cao, Fei</creatorcontrib><creatorcontrib>Gao, Zejun</creatorcontrib><creatorcontrib>He, Chuan</creatorcontrib><creatorcontrib>Feng, Xiaowei</creatorcontrib><creatorcontrib>Xu, Jianfeng</creatorcontrib><creatorcontrib>Xue, Chunling</creatorcontrib><creatorcontrib>Qin, Jianqiang</creatorcontrib><title>Intelligent identification of radar active jamming type based on multi-domain information fusion</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Feature fusion is beneficial to improving the recognition rate of radar active jamming types, which usually costs a lot of computation and network complexity, however. Contrapose the disadvantage of low computational power and resource allocation of missile-borne radar, this paper introduces data enhancement theory into the feature fusion method and proposes an intelligent identification model of radar active jamming type based on multi-domain information fusion. The model first analyzes the time-frequency domain features of the signal and one-dimensional features such as its real part, imaginary part, frequency spectrum, and power spectrum, and then uses the Cutout&amp;Patchup algorithm to fuse the one-dimensional and two-dimensional features into a new multi-domain information fusion matrix as the input of the recognition network. The simulation results show that this method greatly improves the recognition accuracy of active jamming types. Under the WideResNet28_2 classifier, the classification accuracy of active interference type reaches 88.06%, which is 0.79% higher than that before fusion.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Data integration</subject><subject>Frequency spectrum</subject><subject>Jamming</subject><subject>Physics</subject><subject>Radar</subject><subject>Resource allocation</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm1Ok7bJpQw_JgMF9TpmbTIy2qYmnbB_b0pFEQRzkRPI-5zDeRA6B3IFhPMUSpYlRS6KNGOcpJASyAjkB2j2_XP4_eb8GJ2EsCWExlPO0NuyG3TT2I3uBmzreFtjKzVY12FnsFe18lhVg_3QeKva1nYbPOx7jdcq6BrHVLtrBpvUrlW2w7YzzrcTbnYhllN0ZFQT9NlXnaPX25uXxX2yerxbLq5XSZWVLE8oCGFEyaoKoKZFwarMUJWXulgrBqJWXEDOQDMoQRmuiaqpEoLFteKynNE5upj69t6973QY5NbtfBdHyoyTTOQ8LyGmyilVeReC10b23rbK7yUQOeqUoyg5SpOjTgly0hlJOpHW9T-t_6cu_6AenhbPv4Oyrw39BGIthKE</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Cao, Fei</creator><creator>Gao, Zejun</creator><creator>He, Chuan</creator><creator>Feng, Xiaowei</creator><creator>Xu, Jianfeng</creator><creator>Xue, Chunling</creator><creator>Qin, Jianqiang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230401</creationdate><title>Intelligent identification of radar active jamming type based on multi-domain information fusion</title><author>Cao, Fei ; Gao, Zejun ; He, Chuan ; Feng, Xiaowei ; Xu, Jianfeng ; Xue, Chunling ; Qin, Jianqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2745-3199f974cc11d3664c2f3a57e6ba419da891541e4171af8e0ad3a994742015843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Data integration</topic><topic>Frequency spectrum</topic><topic>Jamming</topic><topic>Physics</topic><topic>Radar</topic><topic>Resource allocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Fei</creatorcontrib><creatorcontrib>Gao, Zejun</creatorcontrib><creatorcontrib>He, Chuan</creatorcontrib><creatorcontrib>Feng, Xiaowei</creatorcontrib><creatorcontrib>Xu, Jianfeng</creatorcontrib><creatorcontrib>Xue, Chunling</creatorcontrib><creatorcontrib>Qin, Jianqiang</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Fei</au><au>Gao, Zejun</au><au>He, Chuan</au><au>Feng, Xiaowei</au><au>Xu, Jianfeng</au><au>Xue, Chunling</au><au>Qin, Jianqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent identification of radar active jamming type based on multi-domain information fusion</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>2480</volume><issue>1</issue><spage>12015</spage><pages>12015-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Feature fusion is beneficial to improving the recognition rate of radar active jamming types, which usually costs a lot of computation and network complexity, however. Contrapose the disadvantage of low computational power and resource allocation of missile-borne radar, this paper introduces data enhancement theory into the feature fusion method and proposes an intelligent identification model of radar active jamming type based on multi-domain information fusion. The model first analyzes the time-frequency domain features of the signal and one-dimensional features such as its real part, imaginary part, frequency spectrum, and power spectrum, and then uses the Cutout&amp;Patchup algorithm to fuse the one-dimensional and two-dimensional features into a new multi-domain information fusion matrix as the input of the recognition network. The simulation results show that this method greatly improves the recognition accuracy of active jamming types. Under the WideResNet28_2 classifier, the classification accuracy of active interference type reaches 88.06%, which is 0.79% higher than that before fusion.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2480/1/012015</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2023-04, Vol.2480 (1), p.12015
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2802958571
source Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry
subjects Accuracy
Algorithms
Data integration
Frequency spectrum
Jamming
Physics
Radar
Resource allocation
title Intelligent identification of radar active jamming type based on multi-domain information fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T17%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20identification%20of%20radar%20active%20jamming%20type%20based%20on%20multi-domain%20information%20fusion&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Cao,%20Fei&rft.date=2023-04-01&rft.volume=2480&rft.issue=1&rft.spage=12015&rft.pages=12015-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2480/1/012015&rft_dat=%3Cproquest_iop_j%3E2802958571%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2745-3199f974cc11d3664c2f3a57e6ba419da891541e4171af8e0ad3a994742015843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2802958571&rft_id=info:pmid/&rfr_iscdi=true