Loading…
Quantile regression version of Hodrick–Prescott filter
Hodrick–Prescott (HP) filter is a popular trend filtering method for univariate macroeconomic time series such as real gross domestic product. This paper considers the quantile regression version of HP filter (qHP filter), which is a filtering method defined by replacing quadratic loss function of H...
Saved in:
Published in: | Empirical economics 2023-04, Vol.64 (4), p.1631-1645 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c519t-2dc7bdc5bcc27832d43964b046fc88332ea4e6e9e84f22d4076d91e71ab28dd33 |
---|---|
cites | cdi_FETCH-LOGICAL-c519t-2dc7bdc5bcc27832d43964b046fc88332ea4e6e9e84f22d4076d91e71ab28dd33 |
container_end_page | 1645 |
container_issue | 4 |
container_start_page | 1631 |
container_title | Empirical economics |
container_volume | 64 |
creator | Yamada, Hiroshi |
description | Hodrick–Prescott (HP) filter is a popular trend filtering method for univariate macroeconomic time series such as real gross domestic product. This paper considers the quantile regression version of HP filter (qHP filter), which is a filtering method defined by replacing quadratic loss function of HP filter with quantile regression loss function. One of the essential properties of quantile regression is that if the regression includes intercept, then the ratio of negative residuals can be almost controlled. Does the suggested qHP filter also have the property? This paper answers this question. In addition to the main result, we provide an empirical illustration. |
doi_str_mv | 10.1007/s00181-022-02292-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2803095595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803095595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-2dc7bdc5bcc27832d43964b046fc88332ea4e6e9e84f22d4076d91e71ab28dd33</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrAdfTmb5IspagVCiroOsxk7pSpdVKTqeDOd_ANfRJTR3Dn4nIW95xzLx8hpwzOGYC-SADMMAqc78ZyavbIhEmhqLGc7ZMJCK2pFoIfkqOUVgAgjJITYh62VT90aywiLiOm1IW-eMP4o6Et5qGJnX_--vi8z1sfhqFou_WA8ZgctNU64cmvTsnT9dXjbE4Xdze3s8sF9YrZgfLG67rxqvaeayN4I4UtZQ2ybL0x-R-sJJZo0ciW5y3osrEMNatqbppGiCk5G3s3MbxuMQ1uFbaxzycdNyDAKmVVdvHR5WNIKWLrNrF7qeK7Y-B2hNxIyGU67oeQMzkkxlDK5n6J8a_6n9Q3eh9pkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803095595</pqid></control><display><type>article</type><title>Quantile regression version of Hodrick–Prescott filter</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>EBSCOhost Econlit with Full Text</source><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Yamada, Hiroshi</creator><creatorcontrib>Yamada, Hiroshi</creatorcontrib><description>Hodrick–Prescott (HP) filter is a popular trend filtering method for univariate macroeconomic time series such as real gross domestic product. This paper considers the quantile regression version of HP filter (qHP filter), which is a filtering method defined by replacing quadratic loss function of HP filter with quantile regression loss function. One of the essential properties of quantile regression is that if the regression includes intercept, then the ratio of negative residuals can be almost controlled. Does the suggested qHP filter also have the property? This paper answers this question. In addition to the main result, we provide an empirical illustration.</description><identifier>ISSN: 0377-7332</identifier><identifier>EISSN: 1435-8921</identifier><identifier>DOI: 10.1007/s00181-022-02292-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Econometrics ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Finance ; GDP ; Gross Domestic Product ; Insurance ; Management ; Statistics for Business ; Time series</subject><ispartof>Empirical economics, 2023-04, Vol.64 (4), p.1631-1645</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-2dc7bdc5bcc27832d43964b046fc88332ea4e6e9e84f22d4076d91e71ab28dd33</citedby><cites>FETCH-LOGICAL-c519t-2dc7bdc5bcc27832d43964b046fc88332ea4e6e9e84f22d4076d91e71ab28dd33</cites><orcidid>0000-0001-5560-0319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2803095595/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2803095595?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,12847,27924,27925,33223,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Yamada, Hiroshi</creatorcontrib><title>Quantile regression version of Hodrick–Prescott filter</title><title>Empirical economics</title><addtitle>Empir Econ</addtitle><description>Hodrick–Prescott (HP) filter is a popular trend filtering method for univariate macroeconomic time series such as real gross domestic product. This paper considers the quantile regression version of HP filter (qHP filter), which is a filtering method defined by replacing quadratic loss function of HP filter with quantile regression loss function. One of the essential properties of quantile regression is that if the regression includes intercept, then the ratio of negative residuals can be almost controlled. Does the suggested qHP filter also have the property? This paper answers this question. In addition to the main result, we provide an empirical illustration.</description><subject>Econometrics</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>GDP</subject><subject>Gross Domestic Product</subject><subject>Insurance</subject><subject>Management</subject><subject>Statistics for Business</subject><subject>Time series</subject><issn>0377-7332</issn><issn>1435-8921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4GrAdfTmb5IspagVCiroOsxk7pSpdVKTqeDOd_ANfRJTR3Dn4nIW95xzLx8hpwzOGYC-SADMMAqc78ZyavbIhEmhqLGc7ZMJCK2pFoIfkqOUVgAgjJITYh62VT90aywiLiOm1IW-eMP4o6Et5qGJnX_--vi8z1sfhqFou_WA8ZgctNU64cmvTsnT9dXjbE4Xdze3s8sF9YrZgfLG67rxqvaeayN4I4UtZQ2ybL0x-R-sJJZo0ciW5y3osrEMNatqbppGiCk5G3s3MbxuMQ1uFbaxzycdNyDAKmVVdvHR5WNIKWLrNrF7qeK7Y-B2hNxIyGU67oeQMzkkxlDK5n6J8a_6n9Q3eh9pkg</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Yamada, Hiroshi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5560-0319</orcidid></search><sort><creationdate>20230401</creationdate><title>Quantile regression version of Hodrick–Prescott filter</title><author>Yamada, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-2dc7bdc5bcc27832d43964b046fc88332ea4e6e9e84f22d4076d91e71ab28dd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Econometrics</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>GDP</topic><topic>Gross Domestic Product</topic><topic>Insurance</topic><topic>Management</topic><topic>Statistics for Business</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamada, Hiroshi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Empirical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamada, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantile regression version of Hodrick–Prescott filter</atitle><jtitle>Empirical economics</jtitle><stitle>Empir Econ</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>64</volume><issue>4</issue><spage>1631</spage><epage>1645</epage><pages>1631-1645</pages><issn>0377-7332</issn><eissn>1435-8921</eissn><abstract>Hodrick–Prescott (HP) filter is a popular trend filtering method for univariate macroeconomic time series such as real gross domestic product. This paper considers the quantile regression version of HP filter (qHP filter), which is a filtering method defined by replacing quadratic loss function of HP filter with quantile regression loss function. One of the essential properties of quantile regression is that if the regression includes intercept, then the ratio of negative residuals can be almost controlled. Does the suggested qHP filter also have the property? This paper answers this question. In addition to the main result, we provide an empirical illustration.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00181-022-02292-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5560-0319</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-7332 |
ispartof | Empirical economics, 2023-04, Vol.64 (4), p.1631-1645 |
issn | 0377-7332 1435-8921 |
language | eng |
recordid | cdi_proquest_journals_2803095595 |
source | EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); EBSCOhost Econlit with Full Text; ABI/INFORM Global; Springer Link |
subjects | Econometrics Economic theory Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Finance GDP Gross Domestic Product Insurance Management Statistics for Business Time series |
title | Quantile regression version of Hodrick–Prescott filter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantile%20regression%20version%20of%20Hodrick%E2%80%93Prescott%20filter&rft.jtitle=Empirical%20economics&rft.au=Yamada,%20Hiroshi&rft.date=2023-04-01&rft.volume=64&rft.issue=4&rft.spage=1631&rft.epage=1645&rft.pages=1631-1645&rft.issn=0377-7332&rft.eissn=1435-8921&rft_id=info:doi/10.1007/s00181-022-02292-8&rft_dat=%3Cproquest_cross%3E2803095595%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c519t-2dc7bdc5bcc27832d43964b046fc88332ea4e6e9e84f22d4076d91e71ab28dd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2803095595&rft_id=info:pmid/&rfr_iscdi=true |