Loading…
Liquid-liquid phase separation and viscosity in biomass burning organic aerosol and climatic impacts
Smoke particles generated by burning biomass consist mainly of organic aerosol, referred to as biomass-burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.e. the numbe...
Saved in:
Published in: | ChemRxiv 2023-04 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | ChemRxiv |
container_volume | |
creator | Gregson, Florence K. A. Gerrebos, Nealan G. A. Schervish, Meredith Nikkho, Sepehr Schnitzler, Elijah G. Schwartz, Carley Carlsten, Christopher Abbatt, Jonathan P. D. Kamal, Saeid Shiraiwa, Manabu Bertram, Allan K. |
description | Smoke particles generated by burning biomass consist mainly of organic aerosol, referred to as biomass-burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.e. the number and type of phases present in a particle) are properties of BBOA that are expected to impact several climate-relevant processes but remain highly uncertain. We studied the phase behavior of BBOA using fluorescence microscopy, and showed that BBOA particles comprise two organic phases (a hydrophobic and a hydrophilic phase) across a wide range of atmospheric relative humidity (RH). We determined the viscosity of the two phases using a photobleaching method, and showed that the two phases possess different RH-dependent viscosities. The viscosity of the hydrophobic phase is largely independent of the RH from 0 to 95%. For temperatures less than 230 K, the hydrophobic phase is glassy (viscosity > 1012 Pa s) at RHs below 95%, with possible implications for heterogeneous reaction kinetics and cloud formation in the atmosphere. Using a kinetic multi-layer model (KM-GAP), we investigated the effect of two phases on the atmospheric lifetime of brown carbon within BBOA, which is a climate-warming agent. We showed that the presence of two phases can increase the lifetime of brown carbon in the planetary boundary layer and polar regions compared to previous modelling studies. Hence, liquid-liquid phase separation can lead to an increase in the predicted warming effect of BBOA on climate. |
doi_str_mv | 10.26434/chemrxiv-2023-bjp79 |
format | article |
fullrecord | <record><control><sourceid>proquest_chemr</sourceid><recordid>TN_cdi_proquest_journals_2804118525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2804118525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1159-6cd3fe4b59e78c01c22b0e0b35470d4d08306d0f30e9639af22cf699a80c9a333</originalsourceid><addsrcrecordid>eNo1kD1rwzAYhEWh0JDmH3QQdHb7Sq9kW2MJ_YJAl3Y2kiwlCrblSE5o_n1N2k633HPcHSF3DB54KVA82p3r03c4FRw4FmY_VuqKLLissOBc4Q1Z5bwHAC4ZY0IuSLsJh2Noi-4idNzp7Gh2o056CnGgemjpKWQbc5jONAzUhNjrnKk5piEMWxrTVg_BUu1SzLG7ALYL_YxbGvpR2ynfkmuvu-xWf7okXy_Pn-u3YvPx-r5-2hSWMamK0rbonTBSuaq2wCznBhwYlKKCVrRQI5QteASnSlTac259qZSuwSqNiEsCv7n_NzRjmpukc1MKwczsr9FrlL72pdeVATUj97_ImOLh6PLU7OO8bG7Z8BoEY7XkEn8AZENqVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804118525</pqid></control><display><type>article</type><title>Liquid-liquid phase separation and viscosity in biomass burning organic aerosol and climatic impacts</title><source>Publicly Available Content (ProQuest)</source><creator>Gregson, Florence K. A. ; Gerrebos, Nealan G. A. ; Schervish, Meredith ; Nikkho, Sepehr ; Schnitzler, Elijah G. ; Schwartz, Carley ; Carlsten, Christopher ; Abbatt, Jonathan P. D. ; Kamal, Saeid ; Shiraiwa, Manabu ; Bertram, Allan K.</creator><creatorcontrib>Gregson, Florence K. A. ; Gerrebos, Nealan G. A. ; Schervish, Meredith ; Nikkho, Sepehr ; Schnitzler, Elijah G. ; Schwartz, Carley ; Carlsten, Christopher ; Abbatt, Jonathan P. D. ; Kamal, Saeid ; Shiraiwa, Manabu ; Bertram, Allan K.</creatorcontrib><description>Smoke particles generated by burning biomass consist mainly of organic aerosol, referred to as biomass-burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.e. the number and type of phases present in a particle) are properties of BBOA that are expected to impact several climate-relevant processes but remain highly uncertain. We studied the phase behavior of BBOA using fluorescence microscopy, and showed that BBOA particles comprise two organic phases (a hydrophobic and a hydrophilic phase) across a wide range of atmospheric relative humidity (RH). We determined the viscosity of the two phases using a photobleaching method, and showed that the two phases possess different RH-dependent viscosities. The viscosity of the hydrophobic phase is largely independent of the RH from 0 to 95%. For temperatures less than 230 K, the hydrophobic phase is glassy (viscosity > 1012 Pa s) at RHs below 95%, with possible implications for heterogeneous reaction kinetics and cloud formation in the atmosphere. Using a kinetic multi-layer model (KM-GAP), we investigated the effect of two phases on the atmospheric lifetime of brown carbon within BBOA, which is a climate-warming agent. We showed that the presence of two phases can increase the lifetime of brown carbon in the planetary boundary layer and polar regions compared to previous modelling studies. Hence, liquid-liquid phase separation can lead to an increase in the predicted warming effect of BBOA on climate.</description><edition>1</edition><identifier>EISSN: 2573-2293</identifier><identifier>DOI: 10.26434/chemrxiv-2023-bjp79</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Aerosols ; Atmospheric Chemistry ; Biomass ; Biomass burning ; Carbon ; Chemistry ; Earth, Space, and Environmental Chemistry ; Hydrophobicity ; Liquid phases ; Multilayers ; Phase separation ; Planetary boundary layer ; Polar environments ; Reaction kinetics ; Relative humidity ; Solar radiation ; Viscosity</subject><ispartof>ChemRxiv, 2023-04</ispartof><rights>2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5621-2323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/6441bf2283fa35f8f6fa7b09/smallThumb/liquid-liquid-phase-separation-and-viscosity-in-biomass-burning-organic-aerosol-and-climatic-impacts.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2804118525?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,780,784,885,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Gregson, Florence K. A.</creatorcontrib><creatorcontrib>Gerrebos, Nealan G. A.</creatorcontrib><creatorcontrib>Schervish, Meredith</creatorcontrib><creatorcontrib>Nikkho, Sepehr</creatorcontrib><creatorcontrib>Schnitzler, Elijah G.</creatorcontrib><creatorcontrib>Schwartz, Carley</creatorcontrib><creatorcontrib>Carlsten, Christopher</creatorcontrib><creatorcontrib>Abbatt, Jonathan P. D.</creatorcontrib><creatorcontrib>Kamal, Saeid</creatorcontrib><creatorcontrib>Shiraiwa, Manabu</creatorcontrib><creatorcontrib>Bertram, Allan K.</creatorcontrib><title>Liquid-liquid phase separation and viscosity in biomass burning organic aerosol and climatic impacts</title><title>ChemRxiv</title><description>Smoke particles generated by burning biomass consist mainly of organic aerosol, referred to as biomass-burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.e. the number and type of phases present in a particle) are properties of BBOA that are expected to impact several climate-relevant processes but remain highly uncertain. We studied the phase behavior of BBOA using fluorescence microscopy, and showed that BBOA particles comprise two organic phases (a hydrophobic and a hydrophilic phase) across a wide range of atmospheric relative humidity (RH). We determined the viscosity of the two phases using a photobleaching method, and showed that the two phases possess different RH-dependent viscosities. The viscosity of the hydrophobic phase is largely independent of the RH from 0 to 95%. For temperatures less than 230 K, the hydrophobic phase is glassy (viscosity > 1012 Pa s) at RHs below 95%, with possible implications for heterogeneous reaction kinetics and cloud formation in the atmosphere. Using a kinetic multi-layer model (KM-GAP), we investigated the effect of two phases on the atmospheric lifetime of brown carbon within BBOA, which is a climate-warming agent. We showed that the presence of two phases can increase the lifetime of brown carbon in the planetary boundary layer and polar regions compared to previous modelling studies. Hence, liquid-liquid phase separation can lead to an increase in the predicted warming effect of BBOA on climate.</description><subject>Aerosols</subject><subject>Atmospheric Chemistry</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Earth, Space, and Environmental Chemistry</subject><subject>Hydrophobicity</subject><subject>Liquid phases</subject><subject>Multilayers</subject><subject>Phase separation</subject><subject>Planetary boundary layer</subject><subject>Polar environments</subject><subject>Reaction kinetics</subject><subject>Relative humidity</subject><subject>Solar radiation</subject><subject>Viscosity</subject><issn>2573-2293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo1kD1rwzAYhEWh0JDmH3QQdHb7Sq9kW2MJ_YJAl3Y2kiwlCrblSE5o_n1N2k633HPcHSF3DB54KVA82p3r03c4FRw4FmY_VuqKLLissOBc4Q1Z5bwHAC4ZY0IuSLsJh2Noi-4idNzp7Gh2o056CnGgemjpKWQbc5jONAzUhNjrnKk5piEMWxrTVg_BUu1SzLG7ALYL_YxbGvpR2ynfkmuvu-xWf7okXy_Pn-u3YvPx-r5-2hSWMamK0rbonTBSuaq2wCznBhwYlKKCVrRQI5QteASnSlTac259qZSuwSqNiEsCv7n_NzRjmpukc1MKwczsr9FrlL72pdeVATUj97_ImOLh6PLU7OO8bG7Z8BoEY7XkEn8AZENqVg</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Gregson, Florence K. A.</creator><creator>Gerrebos, Nealan G. A.</creator><creator>Schervish, Meredith</creator><creator>Nikkho, Sepehr</creator><creator>Schnitzler, Elijah G.</creator><creator>Schwartz, Carley</creator><creator>Carlsten, Christopher</creator><creator>Abbatt, Jonathan P. D.</creator><creator>Kamal, Saeid</creator><creator>Shiraiwa, Manabu</creator><creator>Bertram, Allan K.</creator><general>American Chemical Society</general><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>CQEMM</scope><orcidid>https://orcid.org/0000-0002-5621-2323</orcidid></search><sort><creationdate>20230421</creationdate><title>Liquid-liquid phase separation and viscosity in biomass burning organic aerosol and climatic impacts</title><author>Gregson, Florence K. A. ; Gerrebos, Nealan G. A. ; Schervish, Meredith ; Nikkho, Sepehr ; Schnitzler, Elijah G. ; Schwartz, Carley ; Carlsten, Christopher ; Abbatt, Jonathan P. D. ; Kamal, Saeid ; Shiraiwa, Manabu ; Bertram, Allan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1159-6cd3fe4b59e78c01c22b0e0b35470d4d08306d0f30e9639af22cf699a80c9a333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>Atmospheric Chemistry</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Earth, Space, and Environmental Chemistry</topic><topic>Hydrophobicity</topic><topic>Liquid phases</topic><topic>Multilayers</topic><topic>Phase separation</topic><topic>Planetary boundary layer</topic><topic>Polar environments</topic><topic>Reaction kinetics</topic><topic>Relative humidity</topic><topic>Solar radiation</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Gregson, Florence K. A.</creatorcontrib><creatorcontrib>Gerrebos, Nealan G. A.</creatorcontrib><creatorcontrib>Schervish, Meredith</creatorcontrib><creatorcontrib>Nikkho, Sepehr</creatorcontrib><creatorcontrib>Schnitzler, Elijah G.</creatorcontrib><creatorcontrib>Schwartz, Carley</creatorcontrib><creatorcontrib>Carlsten, Christopher</creatorcontrib><creatorcontrib>Abbatt, Jonathan P. D.</creatorcontrib><creatorcontrib>Kamal, Saeid</creatorcontrib><creatorcontrib>Shiraiwa, Manabu</creatorcontrib><creatorcontrib>Bertram, Allan K.</creatorcontrib><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Materials Research Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ChemRxiv</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gregson, Florence K. A.</au><au>Gerrebos, Nealan G. A.</au><au>Schervish, Meredith</au><au>Nikkho, Sepehr</au><au>Schnitzler, Elijah G.</au><au>Schwartz, Carley</au><au>Carlsten, Christopher</au><au>Abbatt, Jonathan P. D.</au><au>Kamal, Saeid</au><au>Shiraiwa, Manabu</au><au>Bertram, Allan K.</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Liquid-liquid phase separation and viscosity in biomass burning organic aerosol and climatic impacts</atitle><jtitle>ChemRxiv</jtitle><date>2023-04-21</date><risdate>2023</risdate><eissn>2573-2293</eissn><abstract>Smoke particles generated by burning biomass consist mainly of organic aerosol, referred to as biomass-burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.e. the number and type of phases present in a particle) are properties of BBOA that are expected to impact several climate-relevant processes but remain highly uncertain. We studied the phase behavior of BBOA using fluorescence microscopy, and showed that BBOA particles comprise two organic phases (a hydrophobic and a hydrophilic phase) across a wide range of atmospheric relative humidity (RH). We determined the viscosity of the two phases using a photobleaching method, and showed that the two phases possess different RH-dependent viscosities. The viscosity of the hydrophobic phase is largely independent of the RH from 0 to 95%. For temperatures less than 230 K, the hydrophobic phase is glassy (viscosity > 1012 Pa s) at RHs below 95%, with possible implications for heterogeneous reaction kinetics and cloud formation in the atmosphere. Using a kinetic multi-layer model (KM-GAP), we investigated the effect of two phases on the atmospheric lifetime of brown carbon within BBOA, which is a climate-warming agent. We showed that the presence of two phases can increase the lifetime of brown carbon in the planetary boundary layer and polar regions compared to previous modelling studies. Hence, liquid-liquid phase separation can lead to an increase in the predicted warming effect of BBOA on climate.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.26434/chemrxiv-2023-bjp79</doi><edition>1</edition><orcidid>https://orcid.org/0000-0002-5621-2323</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2573-2293 |
ispartof | ChemRxiv, 2023-04 |
issn | 2573-2293 |
language | eng |
recordid | cdi_proquest_journals_2804118525 |
source | Publicly Available Content (ProQuest) |
subjects | Aerosols Atmospheric Chemistry Biomass Biomass burning Carbon Chemistry Earth, Space, and Environmental Chemistry Hydrophobicity Liquid phases Multilayers Phase separation Planetary boundary layer Polar environments Reaction kinetics Relative humidity Solar radiation Viscosity |
title | Liquid-liquid phase separation and viscosity in biomass burning organic aerosol and climatic impacts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_chemr&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Liquid-liquid%20phase%20separation%20and%20viscosity%20in%20biomass%20burning%20organic%20aerosol%20and%20climatic%20impacts&rft.jtitle=ChemRxiv&rft.au=Gregson,%20Florence%20K.%20A.&rft.date=2023-04-21&rft.eissn=2573-2293&rft_id=info:doi/10.26434/chemrxiv-2023-bjp79&rft_dat=%3Cproquest_chemr%3E2804118525%3C/proquest_chemr%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1159-6cd3fe4b59e78c01c22b0e0b35470d4d08306d0f30e9639af22cf699a80c9a333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2804118525&rft_id=info:pmid/&rfr_iscdi=true |