Loading…

A new mesh-free method to simulate the mechanical behavior of atomic-scale material structures

Numerical methods that are used to analyse materials at the atomic-scale have some limitations. the molecular dynamics (MD) is time-consuming and not suitable for large-scale applications. The atomic-scale finite element method (AFEM) presents some difficulties when defining the element since the at...

Full description

Saved in:
Bibliographic Details
Main Authors: Mehrez, Sadok, Abbassi, Amal, Jaber, Moez Ben
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2743
creator Mehrez, Sadok
Abbassi, Amal
Jaber, Moez Ben
description Numerical methods that are used to analyse materials at the atomic-scale have some limitations. the molecular dynamics (MD) is time-consuming and not suitable for large-scale applications. The atomic-scale finite element method (AFEM) presents some difficulties when defining the element since the atomic element matrices sizes depend on the number of the neighbouring atoms and a special processing is needed for boundary elements. To overcome this issue, a new atomic scale mesh free method (ASMFM) is developed in this study. Moreover, a standard finite element is defined to fit everywhere in the atomic structure. The calculation of the standard element stiffness matrix is based on the atomic bonding potential. The formulation of the ASMFM is implemented to analyze the atomic structures behavior using the Lennard Jones interatomic potential and a mesh free approach. In this approach, the classical meshing is replaced by a function that determines all the possible atomic interactions of a structure. This function depends on the interatomic distances and the cut-off radius of Lennard Jones potential. For a first step, only the covalent bonding structures are tested in this work. The method is applied to different two-dimensional lattices of atomic structures. Compared with classical methods described in the literature, results are encouraging in terms of computational costs of the numerical simulation and accuracy. The methodology can be expanded to be applied for any other atomic domain or material structure described by an interatomic potential energy.
doi_str_mv 10.1063/5.0132146
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2805260652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805260652</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-1bca0a78a05221639b9581e2c6608cba69dac156d6a42e5b288611752680b8d53</originalsourceid><addsrcrecordid>eNp9kMFLwzAYxYMoOKcH_4OAN6EzSZuv6XEMncLAi4InQ5qmNGNtapJO_O_N2MCbp_fx-H3vwUPolpIFJZA_8AWhOaMFnKEZ5ZxmJVA4RzNCqiJjRf5xia5C2BLCqrIUM_S5xIP5xr0JXdZ6Y9IVO9fg6HCw_bRT0eDYHWzdqcFqtcO16dTeOo9di1V0vdVZSH5iEuxtIkL0k46TN-EaXbRqF8zNSefo_enxbfWcbV7XL6vlJhspiJjRWiuiSqEIZ4xCXtUVF9QwDUCErhVUjdKUQwOqYIbXTAigtOQMBKlFw_M5ujvmjt59TSZEuXWTH1KlZCKFAgHOEnV_pIK2UUXrBjl62yv_I_fOSy5P28mxaf-DKZGHsf8e8l_De3Bn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2805260652</pqid></control><display><type>conference_proceeding</type><title>A new mesh-free method to simulate the mechanical behavior of atomic-scale material structures</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Mehrez, Sadok ; Abbassi, Amal ; Jaber, Moez Ben</creator><contributor>Ching, Yun Chen ; Hui, Luo</contributor><creatorcontrib>Mehrez, Sadok ; Abbassi, Amal ; Jaber, Moez Ben ; Ching, Yun Chen ; Hui, Luo</creatorcontrib><description>Numerical methods that are used to analyse materials at the atomic-scale have some limitations. the molecular dynamics (MD) is time-consuming and not suitable for large-scale applications. The atomic-scale finite element method (AFEM) presents some difficulties when defining the element since the atomic element matrices sizes depend on the number of the neighbouring atoms and a special processing is needed for boundary elements. To overcome this issue, a new atomic scale mesh free method (ASMFM) is developed in this study. Moreover, a standard finite element is defined to fit everywhere in the atomic structure. The calculation of the standard element stiffness matrix is based on the atomic bonding potential. The formulation of the ASMFM is implemented to analyze the atomic structures behavior using the Lennard Jones interatomic potential and a mesh free approach. In this approach, the classical meshing is replaced by a function that determines all the possible atomic interactions of a structure. This function depends on the interatomic distances and the cut-off radius of Lennard Jones potential. For a first step, only the covalent bonding structures are tested in this work. The method is applied to different two-dimensional lattices of atomic structures. Compared with classical methods described in the literature, results are encouraging in terms of computational costs of the numerical simulation and accuracy. The methodology can be expanded to be applied for any other atomic domain or material structure described by an interatomic potential energy.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0132146</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Atomic bonding ; Atomic interactions ; Atomic properties ; Atomic structure ; Chemical bonds ; Computer simulation ; Finite element method ; Mathematical analysis ; Mechanical properties ; Molecular dynamics ; Numerical methods ; Potential energy ; Stiffness matrix</subject><ispartof>AIP conference proceedings, 2023, Vol.2743 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>Ching, Yun Chen</contributor><contributor>Hui, Luo</contributor><creatorcontrib>Mehrez, Sadok</creatorcontrib><creatorcontrib>Abbassi, Amal</creatorcontrib><creatorcontrib>Jaber, Moez Ben</creatorcontrib><title>A new mesh-free method to simulate the mechanical behavior of atomic-scale material structures</title><title>AIP conference proceedings</title><description>Numerical methods that are used to analyse materials at the atomic-scale have some limitations. the molecular dynamics (MD) is time-consuming and not suitable for large-scale applications. The atomic-scale finite element method (AFEM) presents some difficulties when defining the element since the atomic element matrices sizes depend on the number of the neighbouring atoms and a special processing is needed for boundary elements. To overcome this issue, a new atomic scale mesh free method (ASMFM) is developed in this study. Moreover, a standard finite element is defined to fit everywhere in the atomic structure. The calculation of the standard element stiffness matrix is based on the atomic bonding potential. The formulation of the ASMFM is implemented to analyze the atomic structures behavior using the Lennard Jones interatomic potential and a mesh free approach. In this approach, the classical meshing is replaced by a function that determines all the possible atomic interactions of a structure. This function depends on the interatomic distances and the cut-off radius of Lennard Jones potential. For a first step, only the covalent bonding structures are tested in this work. The method is applied to different two-dimensional lattices of atomic structures. Compared with classical methods described in the literature, results are encouraging in terms of computational costs of the numerical simulation and accuracy. The methodology can be expanded to be applied for any other atomic domain or material structure described by an interatomic potential energy.</description><subject>Atomic bonding</subject><subject>Atomic interactions</subject><subject>Atomic properties</subject><subject>Atomic structure</subject><subject>Chemical bonds</subject><subject>Computer simulation</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>Numerical methods</subject><subject>Potential energy</subject><subject>Stiffness matrix</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMFLwzAYxYMoOKcH_4OAN6EzSZuv6XEMncLAi4InQ5qmNGNtapJO_O_N2MCbp_fx-H3vwUPolpIFJZA_8AWhOaMFnKEZ5ZxmJVA4RzNCqiJjRf5xia5C2BLCqrIUM_S5xIP5xr0JXdZ6Y9IVO9fg6HCw_bRT0eDYHWzdqcFqtcO16dTeOo9di1V0vdVZSH5iEuxtIkL0k46TN-EaXbRqF8zNSefo_enxbfWcbV7XL6vlJhspiJjRWiuiSqEIZ4xCXtUVF9QwDUCErhVUjdKUQwOqYIbXTAigtOQMBKlFw_M5ujvmjt59TSZEuXWTH1KlZCKFAgHOEnV_pIK2UUXrBjl62yv_I_fOSy5P28mxaf-DKZGHsf8e8l_De3Bn</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Mehrez, Sadok</creator><creator>Abbassi, Amal</creator><creator>Jaber, Moez Ben</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230421</creationdate><title>A new mesh-free method to simulate the mechanical behavior of atomic-scale material structures</title><author>Mehrez, Sadok ; Abbassi, Amal ; Jaber, Moez Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-1bca0a78a05221639b9581e2c6608cba69dac156d6a42e5b288611752680b8d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic bonding</topic><topic>Atomic interactions</topic><topic>Atomic properties</topic><topic>Atomic structure</topic><topic>Chemical bonds</topic><topic>Computer simulation</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>Numerical methods</topic><topic>Potential energy</topic><topic>Stiffness matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehrez, Sadok</creatorcontrib><creatorcontrib>Abbassi, Amal</creatorcontrib><creatorcontrib>Jaber, Moez Ben</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehrez, Sadok</au><au>Abbassi, Amal</au><au>Jaber, Moez Ben</au><au>Ching, Yun Chen</au><au>Hui, Luo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new mesh-free method to simulate the mechanical behavior of atomic-scale material structures</atitle><btitle>AIP conference proceedings</btitle><date>2023-04-21</date><risdate>2023</risdate><volume>2743</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Numerical methods that are used to analyse materials at the atomic-scale have some limitations. the molecular dynamics (MD) is time-consuming and not suitable for large-scale applications. The atomic-scale finite element method (AFEM) presents some difficulties when defining the element since the atomic element matrices sizes depend on the number of the neighbouring atoms and a special processing is needed for boundary elements. To overcome this issue, a new atomic scale mesh free method (ASMFM) is developed in this study. Moreover, a standard finite element is defined to fit everywhere in the atomic structure. The calculation of the standard element stiffness matrix is based on the atomic bonding potential. The formulation of the ASMFM is implemented to analyze the atomic structures behavior using the Lennard Jones interatomic potential and a mesh free approach. In this approach, the classical meshing is replaced by a function that determines all the possible atomic interactions of a structure. This function depends on the interatomic distances and the cut-off radius of Lennard Jones potential. For a first step, only the covalent bonding structures are tested in this work. The method is applied to different two-dimensional lattices of atomic structures. Compared with classical methods described in the literature, results are encouraging in terms of computational costs of the numerical simulation and accuracy. The methodology can be expanded to be applied for any other atomic domain or material structure described by an interatomic potential energy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0132146</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2743 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2805260652
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Atomic bonding
Atomic interactions
Atomic properties
Atomic structure
Chemical bonds
Computer simulation
Finite element method
Mathematical analysis
Mechanical properties
Molecular dynamics
Numerical methods
Potential energy
Stiffness matrix
title A new mesh-free method to simulate the mechanical behavior of atomic-scale material structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T14%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20mesh-free%20method%20to%20simulate%20the%20mechanical%20behavior%20of%20atomic-scale%20material%20structures&rft.btitle=AIP%20conference%20proceedings&rft.au=Mehrez,%20Sadok&rft.date=2023-04-21&rft.volume=2743&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0132146&rft_dat=%3Cproquest_scita%3E2805260652%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p168t-1bca0a78a05221639b9581e2c6608cba69dac156d6a42e5b288611752680b8d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2805260652&rft_id=info:pmid/&rfr_iscdi=true