Loading…

AI Product Security: A Primer for Developers

Not too long ago, AI security used to mean the research and practice of how AI can empower cybersecurity, that is, AI for security. Ever since Ian Goodfellow and his team popularized adversarial attacks on machine learning, security for AI became an important concern and also part of AI security. It...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-04
Main Authors: Ebenezer R H P Isaac, Reno, Jim
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ebenezer R H P Isaac
Reno, Jim
description Not too long ago, AI security used to mean the research and practice of how AI can empower cybersecurity, that is, AI for security. Ever since Ian Goodfellow and his team popularized adversarial attacks on machine learning, security for AI became an important concern and also part of AI security. It is imperative to understand the threats to machine learning products and avoid common pitfalls in AI product development. This article is addressed to developers, designers, managers and researchers of AI software products.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2805286335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805286335</sourcerecordid><originalsourceid>FETCH-proquest_journals_28052863353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcfRUCCjKTylNLlEITk0uLcosqbRScASKZeamFimk5RcpuKSWpebkF6QWFfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhYGpkYWZsbGpMXGqACA9MNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805286335</pqid></control><display><type>article</type><title>AI Product Security: A Primer for Developers</title><source>Publicly Available Content (ProQuest)</source><creator>Ebenezer R H P Isaac ; Reno, Jim</creator><creatorcontrib>Ebenezer R H P Isaac ; Reno, Jim</creatorcontrib><description>Not too long ago, AI security used to mean the research and practice of how AI can empower cybersecurity, that is, AI for security. Ever since Ian Goodfellow and his team popularized adversarial attacks on machine learning, security for AI became an important concern and also part of AI security. It is imperative to understand the threats to machine learning products and avoid common pitfalls in AI product development. This article is addressed to developers, designers, managers and researchers of AI software products.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cybersecurity ; Machine learning ; Product development</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2805286335?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Ebenezer R H P Isaac</creatorcontrib><creatorcontrib>Reno, Jim</creatorcontrib><title>AI Product Security: A Primer for Developers</title><title>arXiv.org</title><description>Not too long ago, AI security used to mean the research and practice of how AI can empower cybersecurity, that is, AI for security. Ever since Ian Goodfellow and his team popularized adversarial attacks on machine learning, security for AI became an important concern and also part of AI security. It is imperative to understand the threats to machine learning products and avoid common pitfalls in AI product development. This article is addressed to developers, designers, managers and researchers of AI software products.</description><subject>Cybersecurity</subject><subject>Machine learning</subject><subject>Product development</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcfRUCCjKTylNLlEITk0uLcosqbRScASKZeamFimk5RcpuKSWpebkF6QWFfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhYGpkYWZsbGpMXGqACA9MNI</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Ebenezer R H P Isaac</creator><creator>Reno, Jim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230418</creationdate><title>AI Product Security: A Primer for Developers</title><author>Ebenezer R H P Isaac ; Reno, Jim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28052863353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cybersecurity</topic><topic>Machine learning</topic><topic>Product development</topic><toplevel>online_resources</toplevel><creatorcontrib>Ebenezer R H P Isaac</creatorcontrib><creatorcontrib>Reno, Jim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebenezer R H P Isaac</au><au>Reno, Jim</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AI Product Security: A Primer for Developers</atitle><jtitle>arXiv.org</jtitle><date>2023-04-18</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Not too long ago, AI security used to mean the research and practice of how AI can empower cybersecurity, that is, AI for security. Ever since Ian Goodfellow and his team popularized adversarial attacks on machine learning, security for AI became an important concern and also part of AI security. It is imperative to understand the threats to machine learning products and avoid common pitfalls in AI product development. This article is addressed to developers, designers, managers and researchers of AI software products.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2805286335
source Publicly Available Content (ProQuest)
subjects Cybersecurity
Machine learning
Product development
title AI Product Security: A Primer for Developers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AI%20Product%20Security:%20A%20Primer%20for%20Developers&rft.jtitle=arXiv.org&rft.au=Ebenezer%20R%20H%20P%20Isaac&rft.date=2023-04-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2805286335%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28052863353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2805286335&rft_id=info:pmid/&rfr_iscdi=true