Loading…
AI Product Security: A Primer for Developers
Not too long ago, AI security used to mean the research and practice of how AI can empower cybersecurity, that is, AI for security. Ever since Ian Goodfellow and his team popularized adversarial attacks on machine learning, security for AI became an important concern and also part of AI security. It...
Saved in:
Published in: | arXiv.org 2023-04 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ebenezer R H P Isaac Reno, Jim |
description | Not too long ago, AI security used to mean the research and practice of how AI can empower cybersecurity, that is, AI for security. Ever since Ian Goodfellow and his team popularized adversarial attacks on machine learning, security for AI became an important concern and also part of AI security. It is imperative to understand the threats to machine learning products and avoid common pitfalls in AI product development. This article is addressed to developers, designers, managers and researchers of AI software products. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2805286335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805286335</sourcerecordid><originalsourceid>FETCH-proquest_journals_28052863353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcfRUCCjKTylNLlEITk0uLcosqbRScASKZeamFimk5RcpuKSWpebkF6QWFfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhYGpkYWZsbGpMXGqACA9MNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805286335</pqid></control><display><type>article</type><title>AI Product Security: A Primer for Developers</title><source>Publicly Available Content (ProQuest)</source><creator>Ebenezer R H P Isaac ; Reno, Jim</creator><creatorcontrib>Ebenezer R H P Isaac ; Reno, Jim</creatorcontrib><description>Not too long ago, AI security used to mean the research and practice of how AI can empower cybersecurity, that is, AI for security. Ever since Ian Goodfellow and his team popularized adversarial attacks on machine learning, security for AI became an important concern and also part of AI security. It is imperative to understand the threats to machine learning products and avoid common pitfalls in AI product development. This article is addressed to developers, designers, managers and researchers of AI software products.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cybersecurity ; Machine learning ; Product development</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2805286335?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Ebenezer R H P Isaac</creatorcontrib><creatorcontrib>Reno, Jim</creatorcontrib><title>AI Product Security: A Primer for Developers</title><title>arXiv.org</title><description>Not too long ago, AI security used to mean the research and practice of how AI can empower cybersecurity, that is, AI for security. Ever since Ian Goodfellow and his team popularized adversarial attacks on machine learning, security for AI became an important concern and also part of AI security. It is imperative to understand the threats to machine learning products and avoid common pitfalls in AI product development. This article is addressed to developers, designers, managers and researchers of AI software products.</description><subject>Cybersecurity</subject><subject>Machine learning</subject><subject>Product development</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcfRUCCjKTylNLlEITk0uLcosqbRScASKZeamFimk5RcpuKSWpebkF6QWFfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhYGpkYWZsbGpMXGqACA9MNI</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Ebenezer R H P Isaac</creator><creator>Reno, Jim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230418</creationdate><title>AI Product Security: A Primer for Developers</title><author>Ebenezer R H P Isaac ; Reno, Jim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28052863353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cybersecurity</topic><topic>Machine learning</topic><topic>Product development</topic><toplevel>online_resources</toplevel><creatorcontrib>Ebenezer R H P Isaac</creatorcontrib><creatorcontrib>Reno, Jim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebenezer R H P Isaac</au><au>Reno, Jim</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AI Product Security: A Primer for Developers</atitle><jtitle>arXiv.org</jtitle><date>2023-04-18</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Not too long ago, AI security used to mean the research and practice of how AI can empower cybersecurity, that is, AI for security. Ever since Ian Goodfellow and his team popularized adversarial attacks on machine learning, security for AI became an important concern and also part of AI security. It is imperative to understand the threats to machine learning products and avoid common pitfalls in AI product development. This article is addressed to developers, designers, managers and researchers of AI software products.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2805286335 |
source | Publicly Available Content (ProQuest) |
subjects | Cybersecurity Machine learning Product development |
title | AI Product Security: A Primer for Developers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AI%20Product%20Security:%20A%20Primer%20for%20Developers&rft.jtitle=arXiv.org&rft.au=Ebenezer%20R%20H%20P%20Isaac&rft.date=2023-04-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2805286335%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28052863353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2805286335&rft_id=info:pmid/&rfr_iscdi=true |