Loading…

Seismic Characteristics of Integral Abutment Bridge with Rigid-Flexible Combined Abutment Based on Shaking Table Model Test

Aiming at the problem that the strong structure-soil interaction of rigid abutment integral bridge and semi-flexible abutment integral bridge, a new integral abutment bridge with rigid-flexible abutment was proposed, and the shaking table model test was carried out to study its seismic performance....

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2023-04, Vol.2476 (1), p.12020
Main Authors: Huang, HY, Li, L, Liu, F, Zhou, GJ
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aiming at the problem that the strong structure-soil interaction of rigid abutment integral bridge and semi-flexible abutment integral bridge, a new integral abutment bridge with rigid-flexible abutment was proposed, and the shaking table model test was carried out to study its seismic performance. The test result shows that at the seismic fortification intensity 6, the specimen are relatively intact, and no crack was generated, which shown the integral abutment bridge with rigid-flexible combined abutment has good seismic performance. The first-order and second-order frequency of integral abutment bridge with rigid-flexible combined abutment are about 5.0 Hz and 10 Hz, respectively. The damping ratio coefficient of rigid-flexible combined abutment-pile-soil system is about 0.18~0.25. The soil-rigid-flexible combined abutment-pile interaction amplified from 10.71 times the pile diameter above the bottom of the pile foundation. The maximum dynamic amplification factor of specimen and soil are located at the abutment bottom and the soil surface, respectively.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2476/1/012020