Loading…

Diversity of Radial Spin Textures in Chiral Materials

We introduce a classification of the radial spin textures in momentum space that emerge at high-symmetry points in crystals characterized by non-polar chiral point groups (\(D_2\), \(D_3\), \(D_4\), \(D_6\), \(T\), \(O\)). Based on the symmetry constraints imposed by these point groups in a vector f...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-04
Main Authors: Gosálbez-Martínez, Daniel, Crepaldi, Alberto, Yazyev, Oleg V
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce a classification of the radial spin textures in momentum space that emerge at high-symmetry points in crystals characterized by non-polar chiral point groups (\(D_2\), \(D_3\), \(D_4\), \(D_6\), \(T\), \(O\)). Based on the symmetry constraints imposed by these point groups in a vector field, we study the general expression for the radial spin textures up to third order in momentum. Furthermore, we determine the high-symmetry points of the 45 non-polar chiral space groups supporting a radial spin texture. These two principles are used to screen materials databases for archetypes that go beyond the basic hedgehog radial spin texture. Among the selected materials we highlight the axion insulator candidate \(\mathrm{Ta}_2 \mathrm{Se}_8\mathrm{I}\), the material proposed for dark matter detection \(\mathrm{Ag}_3\mathrm{Au}\mathrm{Te}_2\) and heazlewoodite \(\mathrm{Ni}_3\mathrm{S}_2\), a conventional metal predicted to exhibit current-induced spin polarization. We point out that the symmetry analysis proposed in this Letter is more general and extends to studying other vector properties in momentum space.
ISSN:2331-8422
DOI:10.48550/arxiv.2304.11650