Loading…

CHEAT: A Large-scale Dataset for Detecting ChatGPT-writtEn AbsTracts

The powerful ability of ChatGPT has caused widespread concern in the academic community. Malicious users could synthesize dummy academic content through ChatGPT, which is extremely harmful to academic rigor and originality. The need to develop ChatGPT-written content detection algorithms call for la...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-02
Main Authors: Yu, Peipeng, Chen, Jiahan, Feng, Xuan, Xia, Zhihua
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yu, Peipeng
Chen, Jiahan
Feng, Xuan
Xia, Zhihua
description The powerful ability of ChatGPT has caused widespread concern in the academic community. Malicious users could synthesize dummy academic content through ChatGPT, which is extremely harmful to academic rigor and originality. The need to develop ChatGPT-written content detection algorithms call for large-scale datasets. In this paper, we initially investigate the possible negative impact of ChatGPT on academia,and present a large-scale CHatGPT-writtEn AbsTract dataset (CHEAT) to support the development of detection algorithms. In particular, the ChatGPT-written abstract dataset contains 35,304 synthetic abstracts, with Generation, Polish, and Mix as prominent representatives. Based on these data, we perform a thorough analysis of the existing text synthesis detection algorithms. We show that ChatGPT-written abstracts are detectable, while the detection difficulty increases with human involvement.Our dataset is available in https://github.com/botianzhe/CHEAT.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2805744993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805744993</sourcerecordid><originalsourceid>FETCH-proquest_journals_28057449933</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_EMT5ya1LQJuBFAGB4fu5EkKQgho3yP-vg5-gNMdzl2xQGl9EIlRasNCxEFKqY6xiiIdsCKvysyeeMav4DsnsIHR8QII0BFvZ88LR66hfup4_gC63Kx4-56onHh2R-uhIdyxdQsjuvDXLdufS5tX4unn1-KQ6mFe_PSlWiUyio1JU63_uz4sOzi_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805744993</pqid></control><display><type>article</type><title>CHEAT: A Large-scale Dataset for Detecting ChatGPT-writtEn AbsTracts</title><source>Publicly Available Content Database</source><creator>Yu, Peipeng ; Chen, Jiahan ; Feng, Xuan ; Xia, Zhihua</creator><creatorcontrib>Yu, Peipeng ; Chen, Jiahan ; Feng, Xuan ; Xia, Zhihua</creatorcontrib><description>The powerful ability of ChatGPT has caused widespread concern in the academic community. Malicious users could synthesize dummy academic content through ChatGPT, which is extremely harmful to academic rigor and originality. The need to develop ChatGPT-written content detection algorithms call for large-scale datasets. In this paper, we initially investigate the possible negative impact of ChatGPT on academia,and present a large-scale CHatGPT-writtEn AbsTract dataset (CHEAT) to support the development of detection algorithms. In particular, the ChatGPT-written abstract dataset contains 35,304 synthetic abstracts, with Generation, Polish, and Mix as prominent representatives. Based on these data, we perform a thorough analysis of the existing text synthesis detection algorithms. We show that ChatGPT-written abstracts are detectable, while the detection difficulty increases with human involvement.Our dataset is available in https://github.com/botianzhe/CHEAT.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Chatbots ; Datasets</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2805744993?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Yu, Peipeng</creatorcontrib><creatorcontrib>Chen, Jiahan</creatorcontrib><creatorcontrib>Feng, Xuan</creatorcontrib><creatorcontrib>Xia, Zhihua</creatorcontrib><title>CHEAT: A Large-scale Dataset for Detecting ChatGPT-writtEn AbsTracts</title><title>arXiv.org</title><description>The powerful ability of ChatGPT has caused widespread concern in the academic community. Malicious users could synthesize dummy academic content through ChatGPT, which is extremely harmful to academic rigor and originality. The need to develop ChatGPT-written content detection algorithms call for large-scale datasets. In this paper, we initially investigate the possible negative impact of ChatGPT on academia,and present a large-scale CHatGPT-writtEn AbsTract dataset (CHEAT) to support the development of detection algorithms. In particular, the ChatGPT-written abstract dataset contains 35,304 synthetic abstracts, with Generation, Polish, and Mix as prominent representatives. Based on these data, we perform a thorough analysis of the existing text synthesis detection algorithms. We show that ChatGPT-written abstracts are detectable, while the detection difficulty increases with human involvement.Our dataset is available in https://github.com/botianzhe/CHEAT.</description><subject>Algorithms</subject><subject>Chatbots</subject><subject>Datasets</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_EMT5ya1LQJuBFAGB4fu5EkKQgho3yP-vg5-gNMdzl2xQGl9EIlRasNCxEFKqY6xiiIdsCKvysyeeMav4DsnsIHR8QII0BFvZ88LR66hfup4_gC63Kx4-56onHh2R-uhIdyxdQsjuvDXLdufS5tX4unn1-KQ6mFe_PSlWiUyio1JU63_uz4sOzi_</recordid><startdate>20240224</startdate><enddate>20240224</enddate><creator>Yu, Peipeng</creator><creator>Chen, Jiahan</creator><creator>Feng, Xuan</creator><creator>Xia, Zhihua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240224</creationdate><title>CHEAT: A Large-scale Dataset for Detecting ChatGPT-writtEn AbsTracts</title><author>Yu, Peipeng ; Chen, Jiahan ; Feng, Xuan ; Xia, Zhihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28057449933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Chatbots</topic><topic>Datasets</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Peipeng</creatorcontrib><creatorcontrib>Chen, Jiahan</creatorcontrib><creatorcontrib>Feng, Xuan</creatorcontrib><creatorcontrib>Xia, Zhihua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Peipeng</au><au>Chen, Jiahan</au><au>Feng, Xuan</au><au>Xia, Zhihua</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CHEAT: A Large-scale Dataset for Detecting ChatGPT-writtEn AbsTracts</atitle><jtitle>arXiv.org</jtitle><date>2024-02-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The powerful ability of ChatGPT has caused widespread concern in the academic community. Malicious users could synthesize dummy academic content through ChatGPT, which is extremely harmful to academic rigor and originality. The need to develop ChatGPT-written content detection algorithms call for large-scale datasets. In this paper, we initially investigate the possible negative impact of ChatGPT on academia,and present a large-scale CHatGPT-writtEn AbsTract dataset (CHEAT) to support the development of detection algorithms. In particular, the ChatGPT-written abstract dataset contains 35,304 synthetic abstracts, with Generation, Polish, and Mix as prominent representatives. Based on these data, we perform a thorough analysis of the existing text synthesis detection algorithms. We show that ChatGPT-written abstracts are detectable, while the detection difficulty increases with human involvement.Our dataset is available in https://github.com/botianzhe/CHEAT.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2805744993
source Publicly Available Content Database
subjects Algorithms
Chatbots
Datasets
title CHEAT: A Large-scale Dataset for Detecting ChatGPT-writtEn AbsTracts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A34%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CHEAT:%20A%20Large-scale%20Dataset%20for%20Detecting%20ChatGPT-writtEn%20AbsTracts&rft.jtitle=arXiv.org&rft.au=Yu,%20Peipeng&rft.date=2024-02-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2805744993%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28057449933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2805744993&rft_id=info:pmid/&rfr_iscdi=true