Loading…
CHEAT: A Large-scale Dataset for Detecting ChatGPT-writtEn AbsTracts
The powerful ability of ChatGPT has caused widespread concern in the academic community. Malicious users could synthesize dummy academic content through ChatGPT, which is extremely harmful to academic rigor and originality. The need to develop ChatGPT-written content detection algorithms call for la...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yu, Peipeng Chen, Jiahan Feng, Xuan Xia, Zhihua |
description | The powerful ability of ChatGPT has caused widespread concern in the academic community. Malicious users could synthesize dummy academic content through ChatGPT, which is extremely harmful to academic rigor and originality. The need to develop ChatGPT-written content detection algorithms call for large-scale datasets. In this paper, we initially investigate the possible negative impact of ChatGPT on academia,and present a large-scale CHatGPT-writtEn AbsTract dataset (CHEAT) to support the development of detection algorithms. In particular, the ChatGPT-written abstract dataset contains 35,304 synthetic abstracts, with Generation, Polish, and Mix as prominent representatives. Based on these data, we perform a thorough analysis of the existing text synthesis detection algorithms. We show that ChatGPT-written abstracts are detectable, while the detection difficulty increases with human involvement.Our dataset is available in https://github.com/botianzhe/CHEAT. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2805744993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805744993</sourcerecordid><originalsourceid>FETCH-proquest_journals_28057449933</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_EMT5ya1LQJuBFAGB4fu5EkKQgho3yP-vg5-gNMdzl2xQGl9EIlRasNCxEFKqY6xiiIdsCKvysyeeMav4DsnsIHR8QII0BFvZ88LR66hfup4_gC63Kx4-56onHh2R-uhIdyxdQsjuvDXLdufS5tX4unn1-KQ6mFe_PSlWiUyio1JU63_uz4sOzi_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805744993</pqid></control><display><type>article</type><title>CHEAT: A Large-scale Dataset for Detecting ChatGPT-writtEn AbsTracts</title><source>Publicly Available Content Database</source><creator>Yu, Peipeng ; Chen, Jiahan ; Feng, Xuan ; Xia, Zhihua</creator><creatorcontrib>Yu, Peipeng ; Chen, Jiahan ; Feng, Xuan ; Xia, Zhihua</creatorcontrib><description>The powerful ability of ChatGPT has caused widespread concern in the academic community. Malicious users could synthesize dummy academic content through ChatGPT, which is extremely harmful to academic rigor and originality. The need to develop ChatGPT-written content detection algorithms call for large-scale datasets. In this paper, we initially investigate the possible negative impact of ChatGPT on academia,and present a large-scale CHatGPT-writtEn AbsTract dataset (CHEAT) to support the development of detection algorithms. In particular, the ChatGPT-written abstract dataset contains 35,304 synthetic abstracts, with Generation, Polish, and Mix as prominent representatives. Based on these data, we perform a thorough analysis of the existing text synthesis detection algorithms. We show that ChatGPT-written abstracts are detectable, while the detection difficulty increases with human involvement.Our dataset is available in https://github.com/botianzhe/CHEAT.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Chatbots ; Datasets</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2805744993?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Yu, Peipeng</creatorcontrib><creatorcontrib>Chen, Jiahan</creatorcontrib><creatorcontrib>Feng, Xuan</creatorcontrib><creatorcontrib>Xia, Zhihua</creatorcontrib><title>CHEAT: A Large-scale Dataset for Detecting ChatGPT-writtEn AbsTracts</title><title>arXiv.org</title><description>The powerful ability of ChatGPT has caused widespread concern in the academic community. Malicious users could synthesize dummy academic content through ChatGPT, which is extremely harmful to academic rigor and originality. The need to develop ChatGPT-written content detection algorithms call for large-scale datasets. In this paper, we initially investigate the possible negative impact of ChatGPT on academia,and present a large-scale CHatGPT-writtEn AbsTract dataset (CHEAT) to support the development of detection algorithms. In particular, the ChatGPT-written abstract dataset contains 35,304 synthetic abstracts, with Generation, Polish, and Mix as prominent representatives. Based on these data, we perform a thorough analysis of the existing text synthesis detection algorithms. We show that ChatGPT-written abstracts are detectable, while the detection difficulty increases with human involvement.Our dataset is available in https://github.com/botianzhe/CHEAT.</description><subject>Algorithms</subject><subject>Chatbots</subject><subject>Datasets</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_EMT5ya1LQJuBFAGB4fu5EkKQgho3yP-vg5-gNMdzl2xQGl9EIlRasNCxEFKqY6xiiIdsCKvysyeeMav4DsnsIHR8QII0BFvZ88LR66hfup4_gC63Kx4-56onHh2R-uhIdyxdQsjuvDXLdufS5tX4unn1-KQ6mFe_PSlWiUyio1JU63_uz4sOzi_</recordid><startdate>20240224</startdate><enddate>20240224</enddate><creator>Yu, Peipeng</creator><creator>Chen, Jiahan</creator><creator>Feng, Xuan</creator><creator>Xia, Zhihua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240224</creationdate><title>CHEAT: A Large-scale Dataset for Detecting ChatGPT-writtEn AbsTracts</title><author>Yu, Peipeng ; Chen, Jiahan ; Feng, Xuan ; Xia, Zhihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28057449933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Chatbots</topic><topic>Datasets</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Peipeng</creatorcontrib><creatorcontrib>Chen, Jiahan</creatorcontrib><creatorcontrib>Feng, Xuan</creatorcontrib><creatorcontrib>Xia, Zhihua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Peipeng</au><au>Chen, Jiahan</au><au>Feng, Xuan</au><au>Xia, Zhihua</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CHEAT: A Large-scale Dataset for Detecting ChatGPT-writtEn AbsTracts</atitle><jtitle>arXiv.org</jtitle><date>2024-02-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The powerful ability of ChatGPT has caused widespread concern in the academic community. Malicious users could synthesize dummy academic content through ChatGPT, which is extremely harmful to academic rigor and originality. The need to develop ChatGPT-written content detection algorithms call for large-scale datasets. In this paper, we initially investigate the possible negative impact of ChatGPT on academia,and present a large-scale CHatGPT-writtEn AbsTract dataset (CHEAT) to support the development of detection algorithms. In particular, the ChatGPT-written abstract dataset contains 35,304 synthetic abstracts, with Generation, Polish, and Mix as prominent representatives. Based on these data, we perform a thorough analysis of the existing text synthesis detection algorithms. We show that ChatGPT-written abstracts are detectable, while the detection difficulty increases with human involvement.Our dataset is available in https://github.com/botianzhe/CHEAT.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2805744993 |
source | Publicly Available Content Database |
subjects | Algorithms Chatbots Datasets |
title | CHEAT: A Large-scale Dataset for Detecting ChatGPT-writtEn AbsTracts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A34%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CHEAT:%20A%20Large-scale%20Dataset%20for%20Detecting%20ChatGPT-writtEn%20AbsTracts&rft.jtitle=arXiv.org&rft.au=Yu,%20Peipeng&rft.date=2024-02-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2805744993%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28057449933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2805744993&rft_id=info:pmid/&rfr_iscdi=true |