Loading…
Effect of Mechanical Recycling on the Mechanical Properties of PLA-Based Natural Fiber-Reinforced Composites
The present study investigates the feasibility of utilizing polylactic acid (PLA) and PLA-based natural fiber-reinforced composites (NFRCs) in mechanical recycling. A conical twin screw extrusion (CTSE) process was utilized to recycle PLA and PLA-based NFRCs consisting of 90 wt.% PLA and a 10 wt.% p...
Saved in:
Published in: | Journal of composites science 2023-04, Vol.7 (4), p.141 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-ab30f7599f6463bcf2da43515fd77024eeb5d080b89763865f2cf200330b8b483 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-ab30f7599f6463bcf2da43515fd77024eeb5d080b89763865f2cf200330b8b483 |
container_end_page | |
container_issue | 4 |
container_start_page | 141 |
container_title | Journal of composites science |
container_volume | 7 |
creator | Finnerty, James Rowe, Steven Howard, Trevor Connolly, Shane Doran, Christopher Devine, Declan M. Gately, Noel M. Chyzna, Vlasta Portela, Alex Bezerra, Gilberto Silva Nunes McDonald, Paul Colbert, Declan Mary |
description | The present study investigates the feasibility of utilizing polylactic acid (PLA) and PLA-based natural fiber-reinforced composites (NFRCs) in mechanical recycling. A conical twin screw extrusion (CTSE) process was utilized to recycle PLA and PLA-based NFRCs consisting of 90 wt.% PLA and a 10 wt.% proportion of either basalt fibers (BFs) or halloysite nanotubes (HNTs) for up to six recycling steps. The recycled material was then injection molded to produce standard test specimens for impact strength and tensile property analysis. The mechanical recycling of virgin PLA led to significant discoloration of the polymer, indicating degradation during the thermal processing of the polymer due to the formation of chromatophores in the structure. Differential scanning calorimetry (DSC) analysis revealed an increase in glass transition temperature (Tg) with respect to increased recycling steps, indicating an increased content of crystallinity in the PLA. Impact strength testing showed no significant detrimental effects on the NFRCs’ impact strength up to six recycling steps. Tensile testing of PLA/HNT NFRCs likewise did not show major decreases in values when tested. However, PLA/BF NFRCs exhibited a significant decrease in tensile properties after three recycling steps, likely due to a reduction in fiber length beyond the critical fiber length. Scanning electron microscopy (SEM) of the fracture surface of impact specimens revealed a decrease in fiber length with respect to increased recycling steps, as well as poor interfacial adhesion between BF and PLA. This study presents a promising initial view into the mechanical recyclability of PLA-based composites. |
doi_str_mv | 10.3390/jcs7040141 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806542367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750287003</galeid><sourcerecordid>A750287003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ab30f7599f6463bcf2da43515fd77024eeb5d080b89763865f2cf200330b8b483</originalsourceid><addsrcrecordid>eNpNUUtLw0AQXkTBUnvxFwS8CamTfWSTYy2tClVLUfAWNpvZdkuajbvpof_ehArKHGb4XjMwhNwmMGUsh4e9DhI4JDy5ICMqgMdcyq_Lf_M1mYSwBwAqcw45G5F6YQzqLnImekW9U43Vqo42qE-6ts02ck3U7fA_t_auRd9ZDINpvZrFjypgFb2p7uh7fmlL9PEGbWOc1z0xd4fWBdthuCFXRtUBJ799TD6Xi4_5c7x6f3qZz1axZox3sSoZGCny3KQ8ZaU2tFKciUSYSkqgHLEUFWRQZrlMWZYKQ3sNAGM9VPKMjcndObf17vuIoSv27uibfmVBM0gFpyyVvWp6Vm1VjcVwbueV7qvCg9WuQWN7fCYF0EwO6WNyfzZo70LwaIrW24PypyKBYvhA8fcB9gNuCXeW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806542367</pqid></control><display><type>article</type><title>Effect of Mechanical Recycling on the Mechanical Properties of PLA-Based Natural Fiber-Reinforced Composites</title><source>Publicly Available Content Database</source><creator>Finnerty, James ; Rowe, Steven ; Howard, Trevor ; Connolly, Shane ; Doran, Christopher ; Devine, Declan M. ; Gately, Noel M. ; Chyzna, Vlasta ; Portela, Alex ; Bezerra, Gilberto Silva Nunes ; McDonald, Paul ; Colbert, Declan Mary</creator><creatorcontrib>Finnerty, James ; Rowe, Steven ; Howard, Trevor ; Connolly, Shane ; Doran, Christopher ; Devine, Declan M. ; Gately, Noel M. ; Chyzna, Vlasta ; Portela, Alex ; Bezerra, Gilberto Silva Nunes ; McDonald, Paul ; Colbert, Declan Mary</creatorcontrib><description>The present study investigates the feasibility of utilizing polylactic acid (PLA) and PLA-based natural fiber-reinforced composites (NFRCs) in mechanical recycling. A conical twin screw extrusion (CTSE) process was utilized to recycle PLA and PLA-based NFRCs consisting of 90 wt.% PLA and a 10 wt.% proportion of either basalt fibers (BFs) or halloysite nanotubes (HNTs) for up to six recycling steps. The recycled material was then injection molded to produce standard test specimens for impact strength and tensile property analysis. The mechanical recycling of virgin PLA led to significant discoloration of the polymer, indicating degradation during the thermal processing of the polymer due to the formation of chromatophores in the structure. Differential scanning calorimetry (DSC) analysis revealed an increase in glass transition temperature (Tg) with respect to increased recycling steps, indicating an increased content of crystallinity in the PLA. Impact strength testing showed no significant detrimental effects on the NFRCs’ impact strength up to six recycling steps. Tensile testing of PLA/HNT NFRCs likewise did not show major decreases in values when tested. However, PLA/BF NFRCs exhibited a significant decrease in tensile properties after three recycling steps, likely due to a reduction in fiber length beyond the critical fiber length. Scanning electron microscopy (SEM) of the fracture surface of impact specimens revealed a decrease in fiber length with respect to increased recycling steps, as well as poor interfacial adhesion between BF and PLA. This study presents a promising initial view into the mechanical recyclability of PLA-based composites.</description><identifier>ISSN: 2504-477X</identifier><identifier>EISSN: 2504-477X</identifier><identifier>DOI: 10.3390/jcs7040141</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Basalt ; Biopolymers ; Composite materials ; Composition ; Discoloration ; Feasibility studies ; Fiber composites ; Fibrous composites ; Fracture surfaces ; Glass transition temperature ; Impact strength ; Injection molding ; Ireland ; Lactic acid ; Materials ; Mechanical properties ; Methods ; Plastics ; Polyethylene terephthalate ; Polylactic acid ; Polymers ; Recyclability ; Recycling ; Recycling (Waste, etc.) ; Strength testing ; Tensile properties ; Tensile tests</subject><ispartof>Journal of composites science, 2023-04, Vol.7 (4), p.141</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ab30f7599f6463bcf2da43515fd77024eeb5d080b89763865f2cf200330b8b483</citedby><cites>FETCH-LOGICAL-c334t-ab30f7599f6463bcf2da43515fd77024eeb5d080b89763865f2cf200330b8b483</cites><orcidid>0000-0002-1364-5583 ; 0000-0002-7643-5583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806542367/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806542367?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Finnerty, James</creatorcontrib><creatorcontrib>Rowe, Steven</creatorcontrib><creatorcontrib>Howard, Trevor</creatorcontrib><creatorcontrib>Connolly, Shane</creatorcontrib><creatorcontrib>Doran, Christopher</creatorcontrib><creatorcontrib>Devine, Declan M.</creatorcontrib><creatorcontrib>Gately, Noel M.</creatorcontrib><creatorcontrib>Chyzna, Vlasta</creatorcontrib><creatorcontrib>Portela, Alex</creatorcontrib><creatorcontrib>Bezerra, Gilberto Silva Nunes</creatorcontrib><creatorcontrib>McDonald, Paul</creatorcontrib><creatorcontrib>Colbert, Declan Mary</creatorcontrib><title>Effect of Mechanical Recycling on the Mechanical Properties of PLA-Based Natural Fiber-Reinforced Composites</title><title>Journal of composites science</title><description>The present study investigates the feasibility of utilizing polylactic acid (PLA) and PLA-based natural fiber-reinforced composites (NFRCs) in mechanical recycling. A conical twin screw extrusion (CTSE) process was utilized to recycle PLA and PLA-based NFRCs consisting of 90 wt.% PLA and a 10 wt.% proportion of either basalt fibers (BFs) or halloysite nanotubes (HNTs) for up to six recycling steps. The recycled material was then injection molded to produce standard test specimens for impact strength and tensile property analysis. The mechanical recycling of virgin PLA led to significant discoloration of the polymer, indicating degradation during the thermal processing of the polymer due to the formation of chromatophores in the structure. Differential scanning calorimetry (DSC) analysis revealed an increase in glass transition temperature (Tg) with respect to increased recycling steps, indicating an increased content of crystallinity in the PLA. Impact strength testing showed no significant detrimental effects on the NFRCs’ impact strength up to six recycling steps. Tensile testing of PLA/HNT NFRCs likewise did not show major decreases in values when tested. However, PLA/BF NFRCs exhibited a significant decrease in tensile properties after three recycling steps, likely due to a reduction in fiber length beyond the critical fiber length. Scanning electron microscopy (SEM) of the fracture surface of impact specimens revealed a decrease in fiber length with respect to increased recycling steps, as well as poor interfacial adhesion between BF and PLA. This study presents a promising initial view into the mechanical recyclability of PLA-based composites.</description><subject>Basalt</subject><subject>Biopolymers</subject><subject>Composite materials</subject><subject>Composition</subject><subject>Discoloration</subject><subject>Feasibility studies</subject><subject>Fiber composites</subject><subject>Fibrous composites</subject><subject>Fracture surfaces</subject><subject>Glass transition temperature</subject><subject>Impact strength</subject><subject>Injection molding</subject><subject>Ireland</subject><subject>Lactic acid</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Plastics</subject><subject>Polyethylene terephthalate</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Recyclability</subject><subject>Recycling</subject><subject>Recycling (Waste, etc.)</subject><subject>Strength testing</subject><subject>Tensile properties</subject><subject>Tensile tests</subject><issn>2504-477X</issn><issn>2504-477X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUUtLw0AQXkTBUnvxFwS8CamTfWSTYy2tClVLUfAWNpvZdkuajbvpof_ehArKHGb4XjMwhNwmMGUsh4e9DhI4JDy5ICMqgMdcyq_Lf_M1mYSwBwAqcw45G5F6YQzqLnImekW9U43Vqo42qE-6ts02ck3U7fA_t_auRd9ZDINpvZrFjypgFb2p7uh7fmlL9PEGbWOc1z0xd4fWBdthuCFXRtUBJ799TD6Xi4_5c7x6f3qZz1axZox3sSoZGCny3KQ8ZaU2tFKciUSYSkqgHLEUFWRQZrlMWZYKQ3sNAGM9VPKMjcndObf17vuIoSv27uibfmVBM0gFpyyVvWp6Vm1VjcVwbueV7qvCg9WuQWN7fCYF0EwO6WNyfzZo70LwaIrW24PypyKBYvhA8fcB9gNuCXeW</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Finnerty, James</creator><creator>Rowe, Steven</creator><creator>Howard, Trevor</creator><creator>Connolly, Shane</creator><creator>Doran, Christopher</creator><creator>Devine, Declan M.</creator><creator>Gately, Noel M.</creator><creator>Chyzna, Vlasta</creator><creator>Portela, Alex</creator><creator>Bezerra, Gilberto Silva Nunes</creator><creator>McDonald, Paul</creator><creator>Colbert, Declan Mary</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1364-5583</orcidid><orcidid>https://orcid.org/0000-0002-7643-5583</orcidid></search><sort><creationdate>20230401</creationdate><title>Effect of Mechanical Recycling on the Mechanical Properties of PLA-Based Natural Fiber-Reinforced Composites</title><author>Finnerty, James ; Rowe, Steven ; Howard, Trevor ; Connolly, Shane ; Doran, Christopher ; Devine, Declan M. ; Gately, Noel M. ; Chyzna, Vlasta ; Portela, Alex ; Bezerra, Gilberto Silva Nunes ; McDonald, Paul ; Colbert, Declan Mary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ab30f7599f6463bcf2da43515fd77024eeb5d080b89763865f2cf200330b8b483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Basalt</topic><topic>Biopolymers</topic><topic>Composite materials</topic><topic>Composition</topic><topic>Discoloration</topic><topic>Feasibility studies</topic><topic>Fiber composites</topic><topic>Fibrous composites</topic><topic>Fracture surfaces</topic><topic>Glass transition temperature</topic><topic>Impact strength</topic><topic>Injection molding</topic><topic>Ireland</topic><topic>Lactic acid</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Plastics</topic><topic>Polyethylene terephthalate</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Recyclability</topic><topic>Recycling</topic><topic>Recycling (Waste, etc.)</topic><topic>Strength testing</topic><topic>Tensile properties</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finnerty, James</creatorcontrib><creatorcontrib>Rowe, Steven</creatorcontrib><creatorcontrib>Howard, Trevor</creatorcontrib><creatorcontrib>Connolly, Shane</creatorcontrib><creatorcontrib>Doran, Christopher</creatorcontrib><creatorcontrib>Devine, Declan M.</creatorcontrib><creatorcontrib>Gately, Noel M.</creatorcontrib><creatorcontrib>Chyzna, Vlasta</creatorcontrib><creatorcontrib>Portela, Alex</creatorcontrib><creatorcontrib>Bezerra, Gilberto Silva Nunes</creatorcontrib><creatorcontrib>McDonald, Paul</creatorcontrib><creatorcontrib>Colbert, Declan Mary</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of composites science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finnerty, James</au><au>Rowe, Steven</au><au>Howard, Trevor</au><au>Connolly, Shane</au><au>Doran, Christopher</au><au>Devine, Declan M.</au><au>Gately, Noel M.</au><au>Chyzna, Vlasta</au><au>Portela, Alex</au><au>Bezerra, Gilberto Silva Nunes</au><au>McDonald, Paul</au><au>Colbert, Declan Mary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Mechanical Recycling on the Mechanical Properties of PLA-Based Natural Fiber-Reinforced Composites</atitle><jtitle>Journal of composites science</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>7</volume><issue>4</issue><spage>141</spage><pages>141-</pages><issn>2504-477X</issn><eissn>2504-477X</eissn><abstract>The present study investigates the feasibility of utilizing polylactic acid (PLA) and PLA-based natural fiber-reinforced composites (NFRCs) in mechanical recycling. A conical twin screw extrusion (CTSE) process was utilized to recycle PLA and PLA-based NFRCs consisting of 90 wt.% PLA and a 10 wt.% proportion of either basalt fibers (BFs) or halloysite nanotubes (HNTs) for up to six recycling steps. The recycled material was then injection molded to produce standard test specimens for impact strength and tensile property analysis. The mechanical recycling of virgin PLA led to significant discoloration of the polymer, indicating degradation during the thermal processing of the polymer due to the formation of chromatophores in the structure. Differential scanning calorimetry (DSC) analysis revealed an increase in glass transition temperature (Tg) with respect to increased recycling steps, indicating an increased content of crystallinity in the PLA. Impact strength testing showed no significant detrimental effects on the NFRCs’ impact strength up to six recycling steps. Tensile testing of PLA/HNT NFRCs likewise did not show major decreases in values when tested. However, PLA/BF NFRCs exhibited a significant decrease in tensile properties after three recycling steps, likely due to a reduction in fiber length beyond the critical fiber length. Scanning electron microscopy (SEM) of the fracture surface of impact specimens revealed a decrease in fiber length with respect to increased recycling steps, as well as poor interfacial adhesion between BF and PLA. This study presents a promising initial view into the mechanical recyclability of PLA-based composites.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jcs7040141</doi><orcidid>https://orcid.org/0000-0002-1364-5583</orcidid><orcidid>https://orcid.org/0000-0002-7643-5583</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-477X |
ispartof | Journal of composites science, 2023-04, Vol.7 (4), p.141 |
issn | 2504-477X 2504-477X |
language | eng |
recordid | cdi_proquest_journals_2806542367 |
source | Publicly Available Content Database |
subjects | Basalt Biopolymers Composite materials Composition Discoloration Feasibility studies Fiber composites Fibrous composites Fracture surfaces Glass transition temperature Impact strength Injection molding Ireland Lactic acid Materials Mechanical properties Methods Plastics Polyethylene terephthalate Polylactic acid Polymers Recyclability Recycling Recycling (Waste, etc.) Strength testing Tensile properties Tensile tests |
title | Effect of Mechanical Recycling on the Mechanical Properties of PLA-Based Natural Fiber-Reinforced Composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Mechanical%20Recycling%20on%20the%20Mechanical%20Properties%20of%20PLA-Based%20Natural%20Fiber-Reinforced%20Composites&rft.jtitle=Journal%20of%20composites%20science&rft.au=Finnerty,%20James&rft.date=2023-04-01&rft.volume=7&rft.issue=4&rft.spage=141&rft.pages=141-&rft.issn=2504-477X&rft.eissn=2504-477X&rft_id=info:doi/10.3390/jcs7040141&rft_dat=%3Cgale_proqu%3EA750287003%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-ab30f7599f6463bcf2da43515fd77024eeb5d080b89763865f2cf200330b8b483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806542367&rft_id=info:pmid/&rft_galeid=A750287003&rfr_iscdi=true |