Loading…
Benefits and Limitations of Artificial Neural Networks in Process Chromatography Design and Operation
Due to the progressive digitalization of the industry, more and more data is available not only as digitally stored data but also as online data via standardized interfaces. This not only leads to further improvements in process modeling through more data but also opens up the possibility of linking...
Saved in:
Published in: | Processes 2023-04, Vol.11 (4), p.1115 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-7f887200c40593e392140e44018213ab0b0d72fc4f027dba7a79607ef339ac333 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-7f887200c40593e392140e44018213ab0b0d72fc4f027dba7a79607ef339ac333 |
container_end_page | |
container_issue | 4 |
container_start_page | 1115 |
container_title | Processes |
container_volume | 11 |
creator | Mouellef, Mourad Vetter, Florian Lukas Strube, Jochen |
description | Due to the progressive digitalization of the industry, more and more data is available not only as digitally stored data but also as online data via standardized interfaces. This not only leads to further improvements in process modeling through more data but also opens up the possibility of linking process models with online data of the process plants. As a result, digital representations of the processes emerge, which are called Digital Twins. To further improve these Digital Twins, process models in general, and the challenging process design and development task itself, the new data availability is paired with recent advancements in the field of machine learning. This paper presents a case study of an ANN for the parameter estimation of a Steric Mass Action (SMA)-based mixed-mode chromatography model. The results are used to exemplify, discuss, and point out the effort/benefit balance of ANN. To set the results in a wider context, the results and use cases of other working groups are also considered by categorizing them and providing background information to further discuss the benefits, effort, and limitations of ANNs in the field of chromatography. |
doi_str_mv | 10.3390/pr11041115 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806581501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747470426</galeid><sourcerecordid>A747470426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-7f887200c40593e392140e44018213ab0b0d72fc4f027dba7a79607ef339ac333</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqb34CwLehK2Tj93sHmu1KhTrQc9Lmk3a1O5mTVKk_960FXTeYYbhvTfMQ-iawJixCu56TwhwQkh-hgaUUpFVgojzf_MlGoWwgVQVYWVeDJC-1502NgYsuwbPbWujjNZ1ATuDJz5aY5WVW_yqd_7Y4rfznwHbDr95p3QIeLr2rpXRrbzs13v8oINddUe7Ra_90e0KXRi5DXr024foY_b4Pn3O5ounl-lkninGeMyEKUtBARSHvGKaVZRw0JwDKSlhcglLaAQ1ihugollKIUVVgNAmvS-TBRuim5Nv793XTodYb9zOd-lkTUso8pLkQBJrfGKt5FbXtjMueqkSGt1a5Q55pP1E8ATgtEiC25NAeReC16buvW2l39cE6kP09V_07AfidXUJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806581501</pqid></control><display><type>article</type><title>Benefits and Limitations of Artificial Neural Networks in Process Chromatography Design and Operation</title><source>Access via ProQuest (Open Access)</source><source>Coronavirus Research Database</source><creator>Mouellef, Mourad ; Vetter, Florian Lukas ; Strube, Jochen</creator><creatorcontrib>Mouellef, Mourad ; Vetter, Florian Lukas ; Strube, Jochen</creatorcontrib><description>Due to the progressive digitalization of the industry, more and more data is available not only as digitally stored data but also as online data via standardized interfaces. This not only leads to further improvements in process modeling through more data but also opens up the possibility of linking process models with online data of the process plants. As a result, digital representations of the processes emerge, which are called Digital Twins. To further improve these Digital Twins, process models in general, and the challenging process design and development task itself, the new data availability is paired with recent advancements in the field of machine learning. This paper presents a case study of an ANN for the parameter estimation of a Steric Mass Action (SMA)-based mixed-mode chromatography model. The results are used to exemplify, discuss, and point out the effort/benefit balance of ANN. To set the results in a wider context, the results and use cases of other working groups are also considered by categorizing them and providing background information to further discuss the benefits, effort, and limitations of ANNs in the field of chromatography.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11041115</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Artificial neural networks ; Availability ; Chromatography ; Design of experiments ; Digital technology ; Digital twins ; Digitization ; Fluid dynamics ; Machine learning ; Neural networks ; Optimization ; Parameter estimation ; Partial differential equations ; Training ; Twins</subject><ispartof>Processes, 2023-04, Vol.11 (4), p.1115</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-7f887200c40593e392140e44018213ab0b0d72fc4f027dba7a79607ef339ac333</citedby><cites>FETCH-LOGICAL-c334t-7f887200c40593e392140e44018213ab0b0d72fc4f027dba7a79607ef339ac333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806581501/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806581501?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74412,75126</link.rule.ids></links><search><creatorcontrib>Mouellef, Mourad</creatorcontrib><creatorcontrib>Vetter, Florian Lukas</creatorcontrib><creatorcontrib>Strube, Jochen</creatorcontrib><title>Benefits and Limitations of Artificial Neural Networks in Process Chromatography Design and Operation</title><title>Processes</title><description>Due to the progressive digitalization of the industry, more and more data is available not only as digitally stored data but also as online data via standardized interfaces. This not only leads to further improvements in process modeling through more data but also opens up the possibility of linking process models with online data of the process plants. As a result, digital representations of the processes emerge, which are called Digital Twins. To further improve these Digital Twins, process models in general, and the challenging process design and development task itself, the new data availability is paired with recent advancements in the field of machine learning. This paper presents a case study of an ANN for the parameter estimation of a Steric Mass Action (SMA)-based mixed-mode chromatography model. The results are used to exemplify, discuss, and point out the effort/benefit balance of ANN. To set the results in a wider context, the results and use cases of other working groups are also considered by categorizing them and providing background information to further discuss the benefits, effort, and limitations of ANNs in the field of chromatography.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Availability</subject><subject>Chromatography</subject><subject>Design of experiments</subject><subject>Digital technology</subject><subject>Digital twins</subject><subject>Digitization</subject><subject>Fluid dynamics</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Partial differential equations</subject><subject>Training</subject><subject>Twins</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNpNUE1LAzEQDaJgqb34CwLehK2Tj93sHmu1KhTrQc9Lmk3a1O5mTVKk_960FXTeYYbhvTfMQ-iawJixCu56TwhwQkh-hgaUUpFVgojzf_MlGoWwgVQVYWVeDJC-1502NgYsuwbPbWujjNZ1ATuDJz5aY5WVW_yqd_7Y4rfznwHbDr95p3QIeLr2rpXRrbzs13v8oINddUe7Ra_90e0KXRi5DXr024foY_b4Pn3O5ounl-lkninGeMyEKUtBARSHvGKaVZRw0JwDKSlhcglLaAQ1ihugollKIUVVgNAmvS-TBRuim5Nv793XTodYb9zOd-lkTUso8pLkQBJrfGKt5FbXtjMueqkSGt1a5Q55pP1E8ATgtEiC25NAeReC16buvW2l39cE6kP09V_07AfidXUJ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Mouellef, Mourad</creator><creator>Vetter, Florian Lukas</creator><creator>Strube, Jochen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230401</creationdate><title>Benefits and Limitations of Artificial Neural Networks in Process Chromatography Design and Operation</title><author>Mouellef, Mourad ; Vetter, Florian Lukas ; Strube, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-7f887200c40593e392140e44018213ab0b0d72fc4f027dba7a79607ef339ac333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Availability</topic><topic>Chromatography</topic><topic>Design of experiments</topic><topic>Digital technology</topic><topic>Digital twins</topic><topic>Digitization</topic><topic>Fluid dynamics</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Partial differential equations</topic><topic>Training</topic><topic>Twins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mouellef, Mourad</creatorcontrib><creatorcontrib>Vetter, Florian Lukas</creatorcontrib><creatorcontrib>Strube, Jochen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mouellef, Mourad</au><au>Vetter, Florian Lukas</au><au>Strube, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benefits and Limitations of Artificial Neural Networks in Process Chromatography Design and Operation</atitle><jtitle>Processes</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>11</volume><issue>4</issue><spage>1115</spage><pages>1115-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Due to the progressive digitalization of the industry, more and more data is available not only as digitally stored data but also as online data via standardized interfaces. This not only leads to further improvements in process modeling through more data but also opens up the possibility of linking process models with online data of the process plants. As a result, digital representations of the processes emerge, which are called Digital Twins. To further improve these Digital Twins, process models in general, and the challenging process design and development task itself, the new data availability is paired with recent advancements in the field of machine learning. This paper presents a case study of an ANN for the parameter estimation of a Steric Mass Action (SMA)-based mixed-mode chromatography model. The results are used to exemplify, discuss, and point out the effort/benefit balance of ANN. To set the results in a wider context, the results and use cases of other working groups are also considered by categorizing them and providing background information to further discuss the benefits, effort, and limitations of ANNs in the field of chromatography.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11041115</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-04, Vol.11 (4), p.1115 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2806581501 |
source | Access via ProQuest (Open Access); Coronavirus Research Database |
subjects | Algorithms Analysis Artificial neural networks Availability Chromatography Design of experiments Digital technology Digital twins Digitization Fluid dynamics Machine learning Neural networks Optimization Parameter estimation Partial differential equations Training Twins |
title | Benefits and Limitations of Artificial Neural Networks in Process Chromatography Design and Operation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benefits%20and%20Limitations%20of%20Artificial%20Neural%20Networks%20in%20Process%20Chromatography%20Design%20and%20Operation&rft.jtitle=Processes&rft.au=Mouellef,%20Mourad&rft.date=2023-04-01&rft.volume=11&rft.issue=4&rft.spage=1115&rft.pages=1115-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11041115&rft_dat=%3Cgale_proqu%3EA747470426%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-7f887200c40593e392140e44018213ab0b0d72fc4f027dba7a79607ef339ac333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806581501&rft_id=info:pmid/&rft_galeid=A747470426&rfr_iscdi=true |