Loading…

Benefits and Limitations of Artificial Neural Networks in Process Chromatography Design and Operation

Due to the progressive digitalization of the industry, more and more data is available not only as digitally stored data but also as online data via standardized interfaces. This not only leads to further improvements in process modeling through more data but also opens up the possibility of linking...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2023-04, Vol.11 (4), p.1115
Main Authors: Mouellef, Mourad, Vetter, Florian Lukas, Strube, Jochen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-7f887200c40593e392140e44018213ab0b0d72fc4f027dba7a79607ef339ac333
cites cdi_FETCH-LOGICAL-c334t-7f887200c40593e392140e44018213ab0b0d72fc4f027dba7a79607ef339ac333
container_end_page
container_issue 4
container_start_page 1115
container_title Processes
container_volume 11
creator Mouellef, Mourad
Vetter, Florian Lukas
Strube, Jochen
description Due to the progressive digitalization of the industry, more and more data is available not only as digitally stored data but also as online data via standardized interfaces. This not only leads to further improvements in process modeling through more data but also opens up the possibility of linking process models with online data of the process plants. As a result, digital representations of the processes emerge, which are called Digital Twins. To further improve these Digital Twins, process models in general, and the challenging process design and development task itself, the new data availability is paired with recent advancements in the field of machine learning. This paper presents a case study of an ANN for the parameter estimation of a Steric Mass Action (SMA)-based mixed-mode chromatography model. The results are used to exemplify, discuss, and point out the effort/benefit balance of ANN. To set the results in a wider context, the results and use cases of other working groups are also considered by categorizing them and providing background information to further discuss the benefits, effort, and limitations of ANNs in the field of chromatography.
doi_str_mv 10.3390/pr11041115
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806581501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747470426</galeid><sourcerecordid>A747470426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-7f887200c40593e392140e44018213ab0b0d72fc4f027dba7a79607ef339ac333</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqb34CwLehK2Tj93sHmu1KhTrQc9Lmk3a1O5mTVKk_960FXTeYYbhvTfMQ-iawJixCu56TwhwQkh-hgaUUpFVgojzf_MlGoWwgVQVYWVeDJC-1502NgYsuwbPbWujjNZ1ATuDJz5aY5WVW_yqd_7Y4rfznwHbDr95p3QIeLr2rpXRrbzs13v8oINddUe7Ra_90e0KXRi5DXr024foY_b4Pn3O5ounl-lkninGeMyEKUtBARSHvGKaVZRw0JwDKSlhcglLaAQ1ihugollKIUVVgNAmvS-TBRuim5Nv793XTodYb9zOd-lkTUso8pLkQBJrfGKt5FbXtjMueqkSGt1a5Q55pP1E8ATgtEiC25NAeReC16buvW2l39cE6kP09V_07AfidXUJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806581501</pqid></control><display><type>article</type><title>Benefits and Limitations of Artificial Neural Networks in Process Chromatography Design and Operation</title><source>Access via ProQuest (Open Access)</source><source>Coronavirus Research Database</source><creator>Mouellef, Mourad ; Vetter, Florian Lukas ; Strube, Jochen</creator><creatorcontrib>Mouellef, Mourad ; Vetter, Florian Lukas ; Strube, Jochen</creatorcontrib><description>Due to the progressive digitalization of the industry, more and more data is available not only as digitally stored data but also as online data via standardized interfaces. This not only leads to further improvements in process modeling through more data but also opens up the possibility of linking process models with online data of the process plants. As a result, digital representations of the processes emerge, which are called Digital Twins. To further improve these Digital Twins, process models in general, and the challenging process design and development task itself, the new data availability is paired with recent advancements in the field of machine learning. This paper presents a case study of an ANN for the parameter estimation of a Steric Mass Action (SMA)-based mixed-mode chromatography model. The results are used to exemplify, discuss, and point out the effort/benefit balance of ANN. To set the results in a wider context, the results and use cases of other working groups are also considered by categorizing them and providing background information to further discuss the benefits, effort, and limitations of ANNs in the field of chromatography.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11041115</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Artificial neural networks ; Availability ; Chromatography ; Design of experiments ; Digital technology ; Digital twins ; Digitization ; Fluid dynamics ; Machine learning ; Neural networks ; Optimization ; Parameter estimation ; Partial differential equations ; Training ; Twins</subject><ispartof>Processes, 2023-04, Vol.11 (4), p.1115</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-7f887200c40593e392140e44018213ab0b0d72fc4f027dba7a79607ef339ac333</citedby><cites>FETCH-LOGICAL-c334t-7f887200c40593e392140e44018213ab0b0d72fc4f027dba7a79607ef339ac333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806581501/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806581501?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74412,75126</link.rule.ids></links><search><creatorcontrib>Mouellef, Mourad</creatorcontrib><creatorcontrib>Vetter, Florian Lukas</creatorcontrib><creatorcontrib>Strube, Jochen</creatorcontrib><title>Benefits and Limitations of Artificial Neural Networks in Process Chromatography Design and Operation</title><title>Processes</title><description>Due to the progressive digitalization of the industry, more and more data is available not only as digitally stored data but also as online data via standardized interfaces. This not only leads to further improvements in process modeling through more data but also opens up the possibility of linking process models with online data of the process plants. As a result, digital representations of the processes emerge, which are called Digital Twins. To further improve these Digital Twins, process models in general, and the challenging process design and development task itself, the new data availability is paired with recent advancements in the field of machine learning. This paper presents a case study of an ANN for the parameter estimation of a Steric Mass Action (SMA)-based mixed-mode chromatography model. The results are used to exemplify, discuss, and point out the effort/benefit balance of ANN. To set the results in a wider context, the results and use cases of other working groups are also considered by categorizing them and providing background information to further discuss the benefits, effort, and limitations of ANNs in the field of chromatography.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Availability</subject><subject>Chromatography</subject><subject>Design of experiments</subject><subject>Digital technology</subject><subject>Digital twins</subject><subject>Digitization</subject><subject>Fluid dynamics</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Partial differential equations</subject><subject>Training</subject><subject>Twins</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNpNUE1LAzEQDaJgqb34CwLehK2Tj93sHmu1KhTrQc9Lmk3a1O5mTVKk_960FXTeYYbhvTfMQ-iawJixCu56TwhwQkh-hgaUUpFVgojzf_MlGoWwgVQVYWVeDJC-1502NgYsuwbPbWujjNZ1ATuDJz5aY5WVW_yqd_7Y4rfznwHbDr95p3QIeLr2rpXRrbzs13v8oINddUe7Ra_90e0KXRi5DXr024foY_b4Pn3O5ounl-lkninGeMyEKUtBARSHvGKaVZRw0JwDKSlhcglLaAQ1ihugollKIUVVgNAmvS-TBRuim5Nv793XTodYb9zOd-lkTUso8pLkQBJrfGKt5FbXtjMueqkSGt1a5Q55pP1E8ATgtEiC25NAeReC16buvW2l39cE6kP09V_07AfidXUJ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Mouellef, Mourad</creator><creator>Vetter, Florian Lukas</creator><creator>Strube, Jochen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230401</creationdate><title>Benefits and Limitations of Artificial Neural Networks in Process Chromatography Design and Operation</title><author>Mouellef, Mourad ; Vetter, Florian Lukas ; Strube, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-7f887200c40593e392140e44018213ab0b0d72fc4f027dba7a79607ef339ac333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Availability</topic><topic>Chromatography</topic><topic>Design of experiments</topic><topic>Digital technology</topic><topic>Digital twins</topic><topic>Digitization</topic><topic>Fluid dynamics</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Partial differential equations</topic><topic>Training</topic><topic>Twins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mouellef, Mourad</creatorcontrib><creatorcontrib>Vetter, Florian Lukas</creatorcontrib><creatorcontrib>Strube, Jochen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mouellef, Mourad</au><au>Vetter, Florian Lukas</au><au>Strube, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benefits and Limitations of Artificial Neural Networks in Process Chromatography Design and Operation</atitle><jtitle>Processes</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>11</volume><issue>4</issue><spage>1115</spage><pages>1115-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Due to the progressive digitalization of the industry, more and more data is available not only as digitally stored data but also as online data via standardized interfaces. This not only leads to further improvements in process modeling through more data but also opens up the possibility of linking process models with online data of the process plants. As a result, digital representations of the processes emerge, which are called Digital Twins. To further improve these Digital Twins, process models in general, and the challenging process design and development task itself, the new data availability is paired with recent advancements in the field of machine learning. This paper presents a case study of an ANN for the parameter estimation of a Steric Mass Action (SMA)-based mixed-mode chromatography model. The results are used to exemplify, discuss, and point out the effort/benefit balance of ANN. To set the results in a wider context, the results and use cases of other working groups are also considered by categorizing them and providing background information to further discuss the benefits, effort, and limitations of ANNs in the field of chromatography.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11041115</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2023-04, Vol.11 (4), p.1115
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2806581501
source Access via ProQuest (Open Access); Coronavirus Research Database
subjects Algorithms
Analysis
Artificial neural networks
Availability
Chromatography
Design of experiments
Digital technology
Digital twins
Digitization
Fluid dynamics
Machine learning
Neural networks
Optimization
Parameter estimation
Partial differential equations
Training
Twins
title Benefits and Limitations of Artificial Neural Networks in Process Chromatography Design and Operation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benefits%20and%20Limitations%20of%20Artificial%20Neural%20Networks%20in%20Process%20Chromatography%20Design%20and%20Operation&rft.jtitle=Processes&rft.au=Mouellef,%20Mourad&rft.date=2023-04-01&rft.volume=11&rft.issue=4&rft.spage=1115&rft.pages=1115-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11041115&rft_dat=%3Cgale_proqu%3EA747470426%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-7f887200c40593e392140e44018213ab0b0d72fc4f027dba7a79607ef339ac333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806581501&rft_id=info:pmid/&rft_galeid=A747470426&rfr_iscdi=true