Loading…

Dynamic Equilibrium of Sustainable Ecosystem Variables: An Experiment

Developing indicators to monitor the dynamic equilibrium of sustainable ecosystem variables has been challenging for policymakers, companies, and researchers. The new method matrix decomposition analysis (MDA) is an adaptation of the Leontief input–output equations for the disaggregated structural d...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2023-04, Vol.15 (8), p.6744
Main Authors: Perroni, Marcos Gonçalves, da Veiga, Claudimar Pereira, Su, Zhaohui, Ramos, Fernando Maciel, da Silva, Wesley Vieira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c327t-3d2e09f37ff5d6c0f5b97fde49a617abd31cfe65263f3885559c75bfa2491f263
container_end_page
container_issue 8
container_start_page 6744
container_title Sustainability
container_volume 15
creator Perroni, Marcos Gonçalves
da Veiga, Claudimar Pereira
Su, Zhaohui
Ramos, Fernando Maciel
da Silva, Wesley Vieira
description Developing indicators to monitor the dynamic equilibrium of sustainable ecosystem variables has been challenging for policymakers, companies, and researchers. The new method matrix decomposition analysis (MDA) is an adaptation of the Leontief input–output equations for the disaggregated structural decomposition of key performance indicators (KPI). The main problem that this work addresses is related to the behavior of MDA when compared to traditional methodologies such as data envelopment analysis (DEA) and stochastic frontier analysis (SFA). Can MDA be considered robust enough for wide applicability? To compare the models, we developed a methodology called marginal exponentiation experiments. This approach is a type of simulation that raises the inputs and outputs of an entity to a marginal power, thus making it possible to compare a large number of models with the same data. RMarkdown was used for methodological operationalization, wherein data science steps are coded in specific chunks, applying a layered process with modeling. The comparison between the models is operationalized in layers using techniques such as descriptive statistics, correlation, cluster, and linear discriminant analysis (LDA). Given the results, we argue that MDA is a Leontief partial equilibrium model that produces indicators with dual interpretation, enabling the measurement of the dynamic equilibrium of sustainable ecosystem variables. Furthermore, the method offers a new ranking system that detects relative changes in the use of resources correlated with efficiency analysis. The practical value for decision-makers relates to the fact that we found evidence that MDA can be considered robust enough to identify whether a given ecosystem is in equilibrium and that the excessive use of resources or abnormal productivity can cause instability.
doi_str_mv 10.3390/su15086744
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806621562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747540453</galeid><sourcerecordid>A747540453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3d2e09f37ff5d6c0f5b97fde49a617abd31cfe65263f3885559c75bfa2491f263</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoWGov_oIFTwpb87FJdr2VumqhIFj1GrLZpKTsR5tkof33plTQzhxmeHlmhpkB4BbBKSEFfPQDojBnPMsuwAhDjlIEKbz8l1-DifcbGI0QVCA2AuXzoZOtVUm5G2xjK2eHNulNshp8kLaTVaOTUvX-4INuk2_p7FHyT8msS8r9Vjvb6i7cgCsjG68nv3EMvl7Kz_lbunx_Xcxny1QRzENKaqxhYQg3htZMQUOrgptaZ4VkiMuqJkgZzShmxJA8p5QWitPKSJwVyER1DO5Ofbeu3w3aB7HpB9fFkQLnkDGMKMORmp6otWy0sJ3pg5Mqeq3jpn2njY36jGecZjCjJBbcnxVEJuh9WMvBe7FYfZyzDydWud57p43YxhtIdxAIiuMbxN8byA_ghHgZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806621562</pqid></control><display><type>article</type><title>Dynamic Equilibrium of Sustainable Ecosystem Variables: An Experiment</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Perroni, Marcos Gonçalves ; da Veiga, Claudimar Pereira ; Su, Zhaohui ; Ramos, Fernando Maciel ; da Silva, Wesley Vieira</creator><creatorcontrib>Perroni, Marcos Gonçalves ; da Veiga, Claudimar Pereira ; Su, Zhaohui ; Ramos, Fernando Maciel ; da Silva, Wesley Vieira</creatorcontrib><description>Developing indicators to monitor the dynamic equilibrium of sustainable ecosystem variables has been challenging for policymakers, companies, and researchers. The new method matrix decomposition analysis (MDA) is an adaptation of the Leontief input–output equations for the disaggregated structural decomposition of key performance indicators (KPI). The main problem that this work addresses is related to the behavior of MDA when compared to traditional methodologies such as data envelopment analysis (DEA) and stochastic frontier analysis (SFA). Can MDA be considered robust enough for wide applicability? To compare the models, we developed a methodology called marginal exponentiation experiments. This approach is a type of simulation that raises the inputs and outputs of an entity to a marginal power, thus making it possible to compare a large number of models with the same data. RMarkdown was used for methodological operationalization, wherein data science steps are coded in specific chunks, applying a layered process with modeling. The comparison between the models is operationalized in layers using techniques such as descriptive statistics, correlation, cluster, and linear discriminant analysis (LDA). Given the results, we argue that MDA is a Leontief partial equilibrium model that produces indicators with dual interpretation, enabling the measurement of the dynamic equilibrium of sustainable ecosystem variables. Furthermore, the method offers a new ranking system that detects relative changes in the use of resources correlated with efficiency analysis. The practical value for decision-makers relates to the fact that we found evidence that MDA can be considered robust enough to identify whether a given ecosystem is in equilibrium and that the excessive use of resources or abnormal productivity can cause instability.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su15086744</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Business performance management ; Data envelopment analysis ; Data science ; Decision making ; Decomposition ; Discriminant analysis ; Economic research ; Ecosystems ; Efficiency ; Equilibrium ; Equilibrium (Economics) ; Experiments ; Indicators ; Mathematical programming ; Methods ; Monte Carlo simulation ; Statistical analysis ; Sustainability ; Sustainable development ; Sustainable ecosystems ; Variables</subject><ispartof>Sustainability, 2023-04, Vol.15 (8), p.6744</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-3d2e09f37ff5d6c0f5b97fde49a617abd31cfe65263f3885559c75bfa2491f263</cites><orcidid>0000-0001-5354-8676 ; 0000-0002-4960-5954 ; 0000-0003-2005-9504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806621562?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806621562?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,38515,43894,44589,74183,74897</link.rule.ids></links><search><creatorcontrib>Perroni, Marcos Gonçalves</creatorcontrib><creatorcontrib>da Veiga, Claudimar Pereira</creatorcontrib><creatorcontrib>Su, Zhaohui</creatorcontrib><creatorcontrib>Ramos, Fernando Maciel</creatorcontrib><creatorcontrib>da Silva, Wesley Vieira</creatorcontrib><title>Dynamic Equilibrium of Sustainable Ecosystem Variables: An Experiment</title><title>Sustainability</title><description>Developing indicators to monitor the dynamic equilibrium of sustainable ecosystem variables has been challenging for policymakers, companies, and researchers. The new method matrix decomposition analysis (MDA) is an adaptation of the Leontief input–output equations for the disaggregated structural decomposition of key performance indicators (KPI). The main problem that this work addresses is related to the behavior of MDA when compared to traditional methodologies such as data envelopment analysis (DEA) and stochastic frontier analysis (SFA). Can MDA be considered robust enough for wide applicability? To compare the models, we developed a methodology called marginal exponentiation experiments. This approach is a type of simulation that raises the inputs and outputs of an entity to a marginal power, thus making it possible to compare a large number of models with the same data. RMarkdown was used for methodological operationalization, wherein data science steps are coded in specific chunks, applying a layered process with modeling. The comparison between the models is operationalized in layers using techniques such as descriptive statistics, correlation, cluster, and linear discriminant analysis (LDA). Given the results, we argue that MDA is a Leontief partial equilibrium model that produces indicators with dual interpretation, enabling the measurement of the dynamic equilibrium of sustainable ecosystem variables. Furthermore, the method offers a new ranking system that detects relative changes in the use of resources correlated with efficiency analysis. The practical value for decision-makers relates to the fact that we found evidence that MDA can be considered robust enough to identify whether a given ecosystem is in equilibrium and that the excessive use of resources or abnormal productivity can cause instability.</description><subject>Business performance management</subject><subject>Data envelopment analysis</subject><subject>Data science</subject><subject>Decision making</subject><subject>Decomposition</subject><subject>Discriminant analysis</subject><subject>Economic research</subject><subject>Ecosystems</subject><subject>Efficiency</subject><subject>Equilibrium</subject><subject>Equilibrium (Economics)</subject><subject>Experiments</subject><subject>Indicators</subject><subject>Mathematical programming</subject><subject>Methods</subject><subject>Monte Carlo simulation</subject><subject>Statistical analysis</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Sustainable ecosystems</subject><subject>Variables</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNpVkU1LAzEQhoMoWGov_oIFTwpb87FJdr2VumqhIFj1GrLZpKTsR5tkof33plTQzhxmeHlmhpkB4BbBKSEFfPQDojBnPMsuwAhDjlIEKbz8l1-DifcbGI0QVCA2AuXzoZOtVUm5G2xjK2eHNulNshp8kLaTVaOTUvX-4INuk2_p7FHyT8msS8r9Vjvb6i7cgCsjG68nv3EMvl7Kz_lbunx_Xcxny1QRzENKaqxhYQg3htZMQUOrgptaZ4VkiMuqJkgZzShmxJA8p5QWitPKSJwVyER1DO5Ofbeu3w3aB7HpB9fFkQLnkDGMKMORmp6otWy0sJ3pg5Mqeq3jpn2njY36jGecZjCjJBbcnxVEJuh9WMvBe7FYfZyzDydWud57p43YxhtIdxAIiuMbxN8byA_ghHgZ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Perroni, Marcos Gonçalves</creator><creator>da Veiga, Claudimar Pereira</creator><creator>Su, Zhaohui</creator><creator>Ramos, Fernando Maciel</creator><creator>da Silva, Wesley Vieira</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5354-8676</orcidid><orcidid>https://orcid.org/0000-0002-4960-5954</orcidid><orcidid>https://orcid.org/0000-0003-2005-9504</orcidid></search><sort><creationdate>20230401</creationdate><title>Dynamic Equilibrium of Sustainable Ecosystem Variables: An Experiment</title><author>Perroni, Marcos Gonçalves ; da Veiga, Claudimar Pereira ; Su, Zhaohui ; Ramos, Fernando Maciel ; da Silva, Wesley Vieira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3d2e09f37ff5d6c0f5b97fde49a617abd31cfe65263f3885559c75bfa2491f263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Business performance management</topic><topic>Data envelopment analysis</topic><topic>Data science</topic><topic>Decision making</topic><topic>Decomposition</topic><topic>Discriminant analysis</topic><topic>Economic research</topic><topic>Ecosystems</topic><topic>Efficiency</topic><topic>Equilibrium</topic><topic>Equilibrium (Economics)</topic><topic>Experiments</topic><topic>Indicators</topic><topic>Mathematical programming</topic><topic>Methods</topic><topic>Monte Carlo simulation</topic><topic>Statistical analysis</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Sustainable ecosystems</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perroni, Marcos Gonçalves</creatorcontrib><creatorcontrib>da Veiga, Claudimar Pereira</creatorcontrib><creatorcontrib>Su, Zhaohui</creatorcontrib><creatorcontrib>Ramos, Fernando Maciel</creatorcontrib><creatorcontrib>da Silva, Wesley Vieira</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perroni, Marcos Gonçalves</au><au>da Veiga, Claudimar Pereira</au><au>Su, Zhaohui</au><au>Ramos, Fernando Maciel</au><au>da Silva, Wesley Vieira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Equilibrium of Sustainable Ecosystem Variables: An Experiment</atitle><jtitle>Sustainability</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>15</volume><issue>8</issue><spage>6744</spage><pages>6744-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Developing indicators to monitor the dynamic equilibrium of sustainable ecosystem variables has been challenging for policymakers, companies, and researchers. The new method matrix decomposition analysis (MDA) is an adaptation of the Leontief input–output equations for the disaggregated structural decomposition of key performance indicators (KPI). The main problem that this work addresses is related to the behavior of MDA when compared to traditional methodologies such as data envelopment analysis (DEA) and stochastic frontier analysis (SFA). Can MDA be considered robust enough for wide applicability? To compare the models, we developed a methodology called marginal exponentiation experiments. This approach is a type of simulation that raises the inputs and outputs of an entity to a marginal power, thus making it possible to compare a large number of models with the same data. RMarkdown was used for methodological operationalization, wherein data science steps are coded in specific chunks, applying a layered process with modeling. The comparison between the models is operationalized in layers using techniques such as descriptive statistics, correlation, cluster, and linear discriminant analysis (LDA). Given the results, we argue that MDA is a Leontief partial equilibrium model that produces indicators with dual interpretation, enabling the measurement of the dynamic equilibrium of sustainable ecosystem variables. Furthermore, the method offers a new ranking system that detects relative changes in the use of resources correlated with efficiency analysis. The practical value for decision-makers relates to the fact that we found evidence that MDA can be considered robust enough to identify whether a given ecosystem is in equilibrium and that the excessive use of resources or abnormal productivity can cause instability.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su15086744</doi><orcidid>https://orcid.org/0000-0001-5354-8676</orcidid><orcidid>https://orcid.org/0000-0002-4960-5954</orcidid><orcidid>https://orcid.org/0000-0003-2005-9504</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2023-04, Vol.15 (8), p.6744
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2806621562
source Publicly Available Content Database; Coronavirus Research Database
subjects Business performance management
Data envelopment analysis
Data science
Decision making
Decomposition
Discriminant analysis
Economic research
Ecosystems
Efficiency
Equilibrium
Equilibrium (Economics)
Experiments
Indicators
Mathematical programming
Methods
Monte Carlo simulation
Statistical analysis
Sustainability
Sustainable development
Sustainable ecosystems
Variables
title Dynamic Equilibrium of Sustainable Ecosystem Variables: An Experiment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Equilibrium%20of%20Sustainable%20Ecosystem%20Variables:%20An%20Experiment&rft.jtitle=Sustainability&rft.au=Perroni,%20Marcos%20Gon%C3%A7alves&rft.date=2023-04-01&rft.volume=15&rft.issue=8&rft.spage=6744&rft.pages=6744-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su15086744&rft_dat=%3Cgale_proqu%3EA747540453%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-3d2e09f37ff5d6c0f5b97fde49a617abd31cfe65263f3885559c75bfa2491f263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806621562&rft_id=info:pmid/&rft_galeid=A747540453&rfr_iscdi=true