Loading…
Vertical Motions Forced by Small-Scale Terrain and Cloud Microphysical Response in Extratropical Precipitation Systems
Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipi...
Saved in:
Published in: | Journal of the atmospheric sciences 2023-03, Vol.80 (3), p.649-669 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 669 |
container_issue | 3 |
container_start_page | 649 |
container_title | Journal of the atmospheric sciences |
container_volume | 80 |
creator | Geerts, Bart Grasmick, Coltin Rauber, Robert M. Zaremba, Troy J. Xue, Lulin Friedrich, Katja |
description | Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipitation in deep stratiform precipitation systems. The radar data were collected along fixed flight tracks aligned with the wind, about 100 km long between the Snake River Plain and the Idaho Central Mountains, as part of the 2017 Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Data from repeat flight legs are composited in order to suppress transient features and retain the effect of the underlying terrain. Simulations closely match observed series of terrain-driven deep gravity waves, although the simulated wave amplitude is slightly exaggerated. The deep waves produce pockets of supercooled liquid water in the otherwise ice-dominated clouds (confirmed by flight-level observations and the model) and distort radar-derived hydrometeor trajectories. Snow particles aloft encounter several wave updrafts and downdrafts before reaching the ground. No significant wavelike modulation of radar reflectivity or model ice water content occurs. The model does indicate substantial localized precipitation enhancement (1.8–3.0 times higher than the mean) peaking just downwind of individual ridges, especially those ridges with the most intense wave updrafts, on account of shallow pockets of high liquid water content on the upwind side, leading to the growth of snow and graupel, falling out mostly downwind of the crest. Radar reflectivity values near the surface are complicated by snowmelt, but suggest a more modest enhancement downwind of individual ridges. |
doi_str_mv | 10.1175/JAS-D-22-0161.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2806950364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806950364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-cfde1bf1ef946c7c39a37315a529557e975ca4e029ef4a358d8b488761f5ef3</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EEqVw5mqJc6gfcRIfqz54qBWIVFwt11mLVGkSbBeRf4_bspc9fDOz2kHonpJHSnMxeZ2WyTxhLCE0o4_0Ao2oYCQhaSYv0YiQSFLJimt04_2OxGE5HaGfT3ChNrrB6y7UXevxsnMGKrwdcLnXTZOUEQLegHO6brFuKzxrukOF17VxXf81-JP7A3wf3YCjZvEbnA4Rnsi7A1P3ddDHeFwOPsDe36IrqxsPd_97jMrlYjN7TlZvTy-z6SoxjPGQGFsB3VoKVqaZyQ2XmuecCi2YFCIHmQujUyBMgk01F0VVbNOiyDNqBVg-Rg_n1N513wfwQe26g2vjQcUKkklBeJZG1eSsiv9478Cq3tV77QZFiTpWq2K1aq4YU8dqFeV_EmluFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806950364</pqid></control><display><type>article</type><title>Vertical Motions Forced by Small-Scale Terrain and Cloud Microphysical Response in Extratropical Precipitation Systems</title><source>EZB Electronic Journals Library</source><creator>Geerts, Bart ; Grasmick, Coltin ; Rauber, Robert M. ; Zaremba, Troy J. ; Xue, Lulin ; Friedrich, Katja</creator><creatorcontrib>Geerts, Bart ; Grasmick, Coltin ; Rauber, Robert M. ; Zaremba, Troy J. ; Xue, Lulin ; Friedrich, Katja</creatorcontrib><description>Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipitation in deep stratiform precipitation systems. The radar data were collected along fixed flight tracks aligned with the wind, about 100 km long between the Snake River Plain and the Idaho Central Mountains, as part of the 2017 Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Data from repeat flight legs are composited in order to suppress transient features and retain the effect of the underlying terrain. Simulations closely match observed series of terrain-driven deep gravity waves, although the simulated wave amplitude is slightly exaggerated. The deep waves produce pockets of supercooled liquid water in the otherwise ice-dominated clouds (confirmed by flight-level observations and the model) and distort radar-derived hydrometeor trajectories. Snow particles aloft encounter several wave updrafts and downdrafts before reaching the ground. No significant wavelike modulation of radar reflectivity or model ice water content occurs. The model does indicate substantial localized precipitation enhancement (1.8–3.0 times higher than the mean) peaking just downwind of individual ridges, especially those ridges with the most intense wave updrafts, on account of shallow pockets of high liquid water content on the upwind side, leading to the growth of snow and graupel, falling out mostly downwind of the crest. Radar reflectivity values near the surface are complicated by snowmelt, but suggest a more modest enhancement downwind of individual ridges.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-22-0161.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Airborne radar ; Airborne remote sensing ; Aircraft ; Cloud microphysics ; Clouds ; Doppler radar ; Doppler radar data ; Doppler sonar ; Downdraft ; Estimates ; Flight ; Graupel ; Gravity waves ; Heterogeneity ; Hydrometeors ; Liquid water content ; Lowlands ; Mathematical models ; Modelling ; Moisture content ; Mountains ; Numerical simulations ; Orographic gravity waves ; Orographic precipitation ; Precipitation ; Precipitation systems ; Profiling ; Radar ; Radar data ; Radar reflectivity ; Reflectance ; Resolution ; Ridges ; Simulation ; Snowmelt ; Storms ; Terrain ; Troposphere ; Updraft ; Upper troposphere ; Velocity ; Water ; Water content ; Wave amplitude ; Wind ; Winter storms</subject><ispartof>Journal of the atmospheric sciences, 2023-03, Vol.80 (3), p.649-669</ispartof><rights>Copyright American Meteorological Society 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Geerts, Bart</creatorcontrib><creatorcontrib>Grasmick, Coltin</creatorcontrib><creatorcontrib>Rauber, Robert M.</creatorcontrib><creatorcontrib>Zaremba, Troy J.</creatorcontrib><creatorcontrib>Xue, Lulin</creatorcontrib><creatorcontrib>Friedrich, Katja</creatorcontrib><title>Vertical Motions Forced by Small-Scale Terrain and Cloud Microphysical Response in Extratropical Precipitation Systems</title><title>Journal of the atmospheric sciences</title><description>Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipitation in deep stratiform precipitation systems. The radar data were collected along fixed flight tracks aligned with the wind, about 100 km long between the Snake River Plain and the Idaho Central Mountains, as part of the 2017 Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Data from repeat flight legs are composited in order to suppress transient features and retain the effect of the underlying terrain. Simulations closely match observed series of terrain-driven deep gravity waves, although the simulated wave amplitude is slightly exaggerated. The deep waves produce pockets of supercooled liquid water in the otherwise ice-dominated clouds (confirmed by flight-level observations and the model) and distort radar-derived hydrometeor trajectories. Snow particles aloft encounter several wave updrafts and downdrafts before reaching the ground. No significant wavelike modulation of radar reflectivity or model ice water content occurs. The model does indicate substantial localized precipitation enhancement (1.8–3.0 times higher than the mean) peaking just downwind of individual ridges, especially those ridges with the most intense wave updrafts, on account of shallow pockets of high liquid water content on the upwind side, leading to the growth of snow and graupel, falling out mostly downwind of the crest. Radar reflectivity values near the surface are complicated by snowmelt, but suggest a more modest enhancement downwind of individual ridges.</description><subject>Airborne radar</subject><subject>Airborne remote sensing</subject><subject>Aircraft</subject><subject>Cloud microphysics</subject><subject>Clouds</subject><subject>Doppler radar</subject><subject>Doppler radar data</subject><subject>Doppler sonar</subject><subject>Downdraft</subject><subject>Estimates</subject><subject>Flight</subject><subject>Graupel</subject><subject>Gravity waves</subject><subject>Heterogeneity</subject><subject>Hydrometeors</subject><subject>Liquid water content</subject><subject>Lowlands</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Moisture content</subject><subject>Mountains</subject><subject>Numerical simulations</subject><subject>Orographic gravity waves</subject><subject>Orographic precipitation</subject><subject>Precipitation</subject><subject>Precipitation systems</subject><subject>Profiling</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar reflectivity</subject><subject>Reflectance</subject><subject>Resolution</subject><subject>Ridges</subject><subject>Simulation</subject><subject>Snowmelt</subject><subject>Storms</subject><subject>Terrain</subject><subject>Troposphere</subject><subject>Updraft</subject><subject>Upper troposphere</subject><subject>Velocity</subject><subject>Water</subject><subject>Water content</subject><subject>Wave amplitude</subject><subject>Wind</subject><subject>Winter storms</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEtPwzAQhC0EEqVw5mqJc6gfcRIfqz54qBWIVFwt11mLVGkSbBeRf4_bspc9fDOz2kHonpJHSnMxeZ2WyTxhLCE0o4_0Ao2oYCQhaSYv0YiQSFLJimt04_2OxGE5HaGfT3ChNrrB6y7UXevxsnMGKrwdcLnXTZOUEQLegHO6brFuKzxrukOF17VxXf81-JP7A3wf3YCjZvEbnA4Rnsi7A1P3ddDHeFwOPsDe36IrqxsPd_97jMrlYjN7TlZvTy-z6SoxjPGQGFsB3VoKVqaZyQ2XmuecCi2YFCIHmQujUyBMgk01F0VVbNOiyDNqBVg-Rg_n1N513wfwQe26g2vjQcUKkklBeJZG1eSsiv9478Cq3tV77QZFiTpWq2K1aq4YU8dqFeV_EmluFw</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Geerts, Bart</creator><creator>Grasmick, Coltin</creator><creator>Rauber, Robert M.</creator><creator>Zaremba, Troy J.</creator><creator>Xue, Lulin</creator><creator>Friedrich, Katja</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>202303</creationdate><title>Vertical Motions Forced by Small-Scale Terrain and Cloud Microphysical Response in Extratropical Precipitation Systems</title><author>Geerts, Bart ; Grasmick, Coltin ; Rauber, Robert M. ; Zaremba, Troy J. ; Xue, Lulin ; Friedrich, Katja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-cfde1bf1ef946c7c39a37315a529557e975ca4e029ef4a358d8b488761f5ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Airborne radar</topic><topic>Airborne remote sensing</topic><topic>Aircraft</topic><topic>Cloud microphysics</topic><topic>Clouds</topic><topic>Doppler radar</topic><topic>Doppler radar data</topic><topic>Doppler sonar</topic><topic>Downdraft</topic><topic>Estimates</topic><topic>Flight</topic><topic>Graupel</topic><topic>Gravity waves</topic><topic>Heterogeneity</topic><topic>Hydrometeors</topic><topic>Liquid water content</topic><topic>Lowlands</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Moisture content</topic><topic>Mountains</topic><topic>Numerical simulations</topic><topic>Orographic gravity waves</topic><topic>Orographic precipitation</topic><topic>Precipitation</topic><topic>Precipitation systems</topic><topic>Profiling</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar reflectivity</topic><topic>Reflectance</topic><topic>Resolution</topic><topic>Ridges</topic><topic>Simulation</topic><topic>Snowmelt</topic><topic>Storms</topic><topic>Terrain</topic><topic>Troposphere</topic><topic>Updraft</topic><topic>Upper troposphere</topic><topic>Velocity</topic><topic>Water</topic><topic>Water content</topic><topic>Wave amplitude</topic><topic>Wind</topic><topic>Winter storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geerts, Bart</creatorcontrib><creatorcontrib>Grasmick, Coltin</creatorcontrib><creatorcontrib>Rauber, Robert M.</creatorcontrib><creatorcontrib>Zaremba, Troy J.</creatorcontrib><creatorcontrib>Xue, Lulin</creatorcontrib><creatorcontrib>Friedrich, Katja</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geerts, Bart</au><au>Grasmick, Coltin</au><au>Rauber, Robert M.</au><au>Zaremba, Troy J.</au><au>Xue, Lulin</au><au>Friedrich, Katja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertical Motions Forced by Small-Scale Terrain and Cloud Microphysical Response in Extratropical Precipitation Systems</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2023-03</date><risdate>2023</risdate><volume>80</volume><issue>3</issue><spage>649</spage><epage>669</epage><pages>649-669</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipitation in deep stratiform precipitation systems. The radar data were collected along fixed flight tracks aligned with the wind, about 100 km long between the Snake River Plain and the Idaho Central Mountains, as part of the 2017 Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Data from repeat flight legs are composited in order to suppress transient features and retain the effect of the underlying terrain. Simulations closely match observed series of terrain-driven deep gravity waves, although the simulated wave amplitude is slightly exaggerated. The deep waves produce pockets of supercooled liquid water in the otherwise ice-dominated clouds (confirmed by flight-level observations and the model) and distort radar-derived hydrometeor trajectories. Snow particles aloft encounter several wave updrafts and downdrafts before reaching the ground. No significant wavelike modulation of radar reflectivity or model ice water content occurs. The model does indicate substantial localized precipitation enhancement (1.8–3.0 times higher than the mean) peaking just downwind of individual ridges, especially those ridges with the most intense wave updrafts, on account of shallow pockets of high liquid water content on the upwind side, leading to the growth of snow and graupel, falling out mostly downwind of the crest. Radar reflectivity values near the surface are complicated by snowmelt, but suggest a more modest enhancement downwind of individual ridges.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-22-0161.1</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2023-03, Vol.80 (3), p.649-669 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_journals_2806950364 |
source | EZB Electronic Journals Library |
subjects | Airborne radar Airborne remote sensing Aircraft Cloud microphysics Clouds Doppler radar Doppler radar data Doppler sonar Downdraft Estimates Flight Graupel Gravity waves Heterogeneity Hydrometeors Liquid water content Lowlands Mathematical models Modelling Moisture content Mountains Numerical simulations Orographic gravity waves Orographic precipitation Precipitation Precipitation systems Profiling Radar Radar data Radar reflectivity Reflectance Resolution Ridges Simulation Snowmelt Storms Terrain Troposphere Updraft Upper troposphere Velocity Water Water content Wave amplitude Wind Winter storms |
title | Vertical Motions Forced by Small-Scale Terrain and Cloud Microphysical Response in Extratropical Precipitation Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertical%20Motions%20Forced%20by%20Small-Scale%20Terrain%20and%20Cloud%20Microphysical%20Response%20in%20Extratropical%20Precipitation%20Systems&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Geerts,%20Bart&rft.date=2023-03&rft.volume=80&rft.issue=3&rft.spage=649&rft.epage=669&rft.pages=649-669&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-22-0161.1&rft_dat=%3Cproquest_cross%3E2806950364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-cfde1bf1ef946c7c39a37315a529557e975ca4e029ef4a358d8b488761f5ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806950364&rft_id=info:pmid/&rfr_iscdi=true |