Loading…

Vertical Motions Forced by Small-Scale Terrain and Cloud Microphysical Response in Extratropical Precipitation Systems

Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the atmospheric sciences 2023-03, Vol.80 (3), p.649-669
Main Authors: Geerts, Bart, Grasmick, Coltin, Rauber, Robert M., Zaremba, Troy J., Xue, Lulin, Friedrich, Katja
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 669
container_issue 3
container_start_page 649
container_title Journal of the atmospheric sciences
container_volume 80
creator Geerts, Bart
Grasmick, Coltin
Rauber, Robert M.
Zaremba, Troy J.
Xue, Lulin
Friedrich, Katja
description Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipitation in deep stratiform precipitation systems. The radar data were collected along fixed flight tracks aligned with the wind, about 100 km long between the Snake River Plain and the Idaho Central Mountains, as part of the 2017 Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Data from repeat flight legs are composited in order to suppress transient features and retain the effect of the underlying terrain. Simulations closely match observed series of terrain-driven deep gravity waves, although the simulated wave amplitude is slightly exaggerated. The deep waves produce pockets of supercooled liquid water in the otherwise ice-dominated clouds (confirmed by flight-level observations and the model) and distort radar-derived hydrometeor trajectories. Snow particles aloft encounter several wave updrafts and downdrafts before reaching the ground. No significant wavelike modulation of radar reflectivity or model ice water content occurs. The model does indicate substantial localized precipitation enhancement (1.8–3.0 times higher than the mean) peaking just downwind of individual ridges, especially those ridges with the most intense wave updrafts, on account of shallow pockets of high liquid water content on the upwind side, leading to the growth of snow and graupel, falling out mostly downwind of the crest. Radar reflectivity values near the surface are complicated by snowmelt, but suggest a more modest enhancement downwind of individual ridges.
doi_str_mv 10.1175/JAS-D-22-0161.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2806950364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806950364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-cfde1bf1ef946c7c39a37315a529557e975ca4e029ef4a358d8b488761f5ef3</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EEqVw5mqJc6gfcRIfqz54qBWIVFwt11mLVGkSbBeRf4_bspc9fDOz2kHonpJHSnMxeZ2WyTxhLCE0o4_0Ao2oYCQhaSYv0YiQSFLJimt04_2OxGE5HaGfT3ChNrrB6y7UXevxsnMGKrwdcLnXTZOUEQLegHO6brFuKzxrukOF17VxXf81-JP7A3wf3YCjZvEbnA4Rnsi7A1P3ddDHeFwOPsDe36IrqxsPd_97jMrlYjN7TlZvTy-z6SoxjPGQGFsB3VoKVqaZyQ2XmuecCi2YFCIHmQujUyBMgk01F0VVbNOiyDNqBVg-Rg_n1N513wfwQe26g2vjQcUKkklBeJZG1eSsiv9478Cq3tV77QZFiTpWq2K1aq4YU8dqFeV_EmluFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806950364</pqid></control><display><type>article</type><title>Vertical Motions Forced by Small-Scale Terrain and Cloud Microphysical Response in Extratropical Precipitation Systems</title><source>EZB Electronic Journals Library</source><creator>Geerts, Bart ; Grasmick, Coltin ; Rauber, Robert M. ; Zaremba, Troy J. ; Xue, Lulin ; Friedrich, Katja</creator><creatorcontrib>Geerts, Bart ; Grasmick, Coltin ; Rauber, Robert M. ; Zaremba, Troy J. ; Xue, Lulin ; Friedrich, Katja</creatorcontrib><description>Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipitation in deep stratiform precipitation systems. The radar data were collected along fixed flight tracks aligned with the wind, about 100 km long between the Snake River Plain and the Idaho Central Mountains, as part of the 2017 Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Data from repeat flight legs are composited in order to suppress transient features and retain the effect of the underlying terrain. Simulations closely match observed series of terrain-driven deep gravity waves, although the simulated wave amplitude is slightly exaggerated. The deep waves produce pockets of supercooled liquid water in the otherwise ice-dominated clouds (confirmed by flight-level observations and the model) and distort radar-derived hydrometeor trajectories. Snow particles aloft encounter several wave updrafts and downdrafts before reaching the ground. No significant wavelike modulation of radar reflectivity or model ice water content occurs. The model does indicate substantial localized precipitation enhancement (1.8–3.0 times higher than the mean) peaking just downwind of individual ridges, especially those ridges with the most intense wave updrafts, on account of shallow pockets of high liquid water content on the upwind side, leading to the growth of snow and graupel, falling out mostly downwind of the crest. Radar reflectivity values near the surface are complicated by snowmelt, but suggest a more modest enhancement downwind of individual ridges.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-22-0161.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Airborne radar ; Airborne remote sensing ; Aircraft ; Cloud microphysics ; Clouds ; Doppler radar ; Doppler radar data ; Doppler sonar ; Downdraft ; Estimates ; Flight ; Graupel ; Gravity waves ; Heterogeneity ; Hydrometeors ; Liquid water content ; Lowlands ; Mathematical models ; Modelling ; Moisture content ; Mountains ; Numerical simulations ; Orographic gravity waves ; Orographic precipitation ; Precipitation ; Precipitation systems ; Profiling ; Radar ; Radar data ; Radar reflectivity ; Reflectance ; Resolution ; Ridges ; Simulation ; Snowmelt ; Storms ; Terrain ; Troposphere ; Updraft ; Upper troposphere ; Velocity ; Water ; Water content ; Wave amplitude ; Wind ; Winter storms</subject><ispartof>Journal of the atmospheric sciences, 2023-03, Vol.80 (3), p.649-669</ispartof><rights>Copyright American Meteorological Society 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Geerts, Bart</creatorcontrib><creatorcontrib>Grasmick, Coltin</creatorcontrib><creatorcontrib>Rauber, Robert M.</creatorcontrib><creatorcontrib>Zaremba, Troy J.</creatorcontrib><creatorcontrib>Xue, Lulin</creatorcontrib><creatorcontrib>Friedrich, Katja</creatorcontrib><title>Vertical Motions Forced by Small-Scale Terrain and Cloud Microphysical Response in Extratropical Precipitation Systems</title><title>Journal of the atmospheric sciences</title><description>Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipitation in deep stratiform precipitation systems. The radar data were collected along fixed flight tracks aligned with the wind, about 100 km long between the Snake River Plain and the Idaho Central Mountains, as part of the 2017 Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Data from repeat flight legs are composited in order to suppress transient features and retain the effect of the underlying terrain. Simulations closely match observed series of terrain-driven deep gravity waves, although the simulated wave amplitude is slightly exaggerated. The deep waves produce pockets of supercooled liquid water in the otherwise ice-dominated clouds (confirmed by flight-level observations and the model) and distort radar-derived hydrometeor trajectories. Snow particles aloft encounter several wave updrafts and downdrafts before reaching the ground. No significant wavelike modulation of radar reflectivity or model ice water content occurs. The model does indicate substantial localized precipitation enhancement (1.8–3.0 times higher than the mean) peaking just downwind of individual ridges, especially those ridges with the most intense wave updrafts, on account of shallow pockets of high liquid water content on the upwind side, leading to the growth of snow and graupel, falling out mostly downwind of the crest. Radar reflectivity values near the surface are complicated by snowmelt, but suggest a more modest enhancement downwind of individual ridges.</description><subject>Airborne radar</subject><subject>Airborne remote sensing</subject><subject>Aircraft</subject><subject>Cloud microphysics</subject><subject>Clouds</subject><subject>Doppler radar</subject><subject>Doppler radar data</subject><subject>Doppler sonar</subject><subject>Downdraft</subject><subject>Estimates</subject><subject>Flight</subject><subject>Graupel</subject><subject>Gravity waves</subject><subject>Heterogeneity</subject><subject>Hydrometeors</subject><subject>Liquid water content</subject><subject>Lowlands</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Moisture content</subject><subject>Mountains</subject><subject>Numerical simulations</subject><subject>Orographic gravity waves</subject><subject>Orographic precipitation</subject><subject>Precipitation</subject><subject>Precipitation systems</subject><subject>Profiling</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar reflectivity</subject><subject>Reflectance</subject><subject>Resolution</subject><subject>Ridges</subject><subject>Simulation</subject><subject>Snowmelt</subject><subject>Storms</subject><subject>Terrain</subject><subject>Troposphere</subject><subject>Updraft</subject><subject>Upper troposphere</subject><subject>Velocity</subject><subject>Water</subject><subject>Water content</subject><subject>Wave amplitude</subject><subject>Wind</subject><subject>Winter storms</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEtPwzAQhC0EEqVw5mqJc6gfcRIfqz54qBWIVFwt11mLVGkSbBeRf4_bspc9fDOz2kHonpJHSnMxeZ2WyTxhLCE0o4_0Ao2oYCQhaSYv0YiQSFLJimt04_2OxGE5HaGfT3ChNrrB6y7UXevxsnMGKrwdcLnXTZOUEQLegHO6brFuKzxrukOF17VxXf81-JP7A3wf3YCjZvEbnA4Rnsi7A1P3ddDHeFwOPsDe36IrqxsPd_97jMrlYjN7TlZvTy-z6SoxjPGQGFsB3VoKVqaZyQ2XmuecCi2YFCIHmQujUyBMgk01F0VVbNOiyDNqBVg-Rg_n1N513wfwQe26g2vjQcUKkklBeJZG1eSsiv9478Cq3tV77QZFiTpWq2K1aq4YU8dqFeV_EmluFw</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Geerts, Bart</creator><creator>Grasmick, Coltin</creator><creator>Rauber, Robert M.</creator><creator>Zaremba, Troy J.</creator><creator>Xue, Lulin</creator><creator>Friedrich, Katja</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>202303</creationdate><title>Vertical Motions Forced by Small-Scale Terrain and Cloud Microphysical Response in Extratropical Precipitation Systems</title><author>Geerts, Bart ; Grasmick, Coltin ; Rauber, Robert M. ; Zaremba, Troy J. ; Xue, Lulin ; Friedrich, Katja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-cfde1bf1ef946c7c39a37315a529557e975ca4e029ef4a358d8b488761f5ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Airborne radar</topic><topic>Airborne remote sensing</topic><topic>Aircraft</topic><topic>Cloud microphysics</topic><topic>Clouds</topic><topic>Doppler radar</topic><topic>Doppler radar data</topic><topic>Doppler sonar</topic><topic>Downdraft</topic><topic>Estimates</topic><topic>Flight</topic><topic>Graupel</topic><topic>Gravity waves</topic><topic>Heterogeneity</topic><topic>Hydrometeors</topic><topic>Liquid water content</topic><topic>Lowlands</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Moisture content</topic><topic>Mountains</topic><topic>Numerical simulations</topic><topic>Orographic gravity waves</topic><topic>Orographic precipitation</topic><topic>Precipitation</topic><topic>Precipitation systems</topic><topic>Profiling</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar reflectivity</topic><topic>Reflectance</topic><topic>Resolution</topic><topic>Ridges</topic><topic>Simulation</topic><topic>Snowmelt</topic><topic>Storms</topic><topic>Terrain</topic><topic>Troposphere</topic><topic>Updraft</topic><topic>Upper troposphere</topic><topic>Velocity</topic><topic>Water</topic><topic>Water content</topic><topic>Wave amplitude</topic><topic>Wind</topic><topic>Winter storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geerts, Bart</creatorcontrib><creatorcontrib>Grasmick, Coltin</creatorcontrib><creatorcontrib>Rauber, Robert M.</creatorcontrib><creatorcontrib>Zaremba, Troy J.</creatorcontrib><creatorcontrib>Xue, Lulin</creatorcontrib><creatorcontrib>Friedrich, Katja</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geerts, Bart</au><au>Grasmick, Coltin</au><au>Rauber, Robert M.</au><au>Zaremba, Troy J.</au><au>Xue, Lulin</au><au>Friedrich, Katja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertical Motions Forced by Small-Scale Terrain and Cloud Microphysical Response in Extratropical Precipitation Systems</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2023-03</date><risdate>2023</risdate><volume>80</volume><issue>3</issue><spage>649</spage><epage>669</epage><pages>649-669</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipitation in deep stratiform precipitation systems. The radar data were collected along fixed flight tracks aligned with the wind, about 100 km long between the Snake River Plain and the Idaho Central Mountains, as part of the 2017 Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Data from repeat flight legs are composited in order to suppress transient features and retain the effect of the underlying terrain. Simulations closely match observed series of terrain-driven deep gravity waves, although the simulated wave amplitude is slightly exaggerated. The deep waves produce pockets of supercooled liquid water in the otherwise ice-dominated clouds (confirmed by flight-level observations and the model) and distort radar-derived hydrometeor trajectories. Snow particles aloft encounter several wave updrafts and downdrafts before reaching the ground. No significant wavelike modulation of radar reflectivity or model ice water content occurs. The model does indicate substantial localized precipitation enhancement (1.8–3.0 times higher than the mean) peaking just downwind of individual ridges, especially those ridges with the most intense wave updrafts, on account of shallow pockets of high liquid water content on the upwind side, leading to the growth of snow and graupel, falling out mostly downwind of the crest. Radar reflectivity values near the surface are complicated by snowmelt, but suggest a more modest enhancement downwind of individual ridges.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-22-0161.1</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2023-03, Vol.80 (3), p.649-669
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_journals_2806950364
source EZB Electronic Journals Library
subjects Airborne radar
Airborne remote sensing
Aircraft
Cloud microphysics
Clouds
Doppler radar
Doppler radar data
Doppler sonar
Downdraft
Estimates
Flight
Graupel
Gravity waves
Heterogeneity
Hydrometeors
Liquid water content
Lowlands
Mathematical models
Modelling
Moisture content
Mountains
Numerical simulations
Orographic gravity waves
Orographic precipitation
Precipitation
Precipitation systems
Profiling
Radar
Radar data
Radar reflectivity
Reflectance
Resolution
Ridges
Simulation
Snowmelt
Storms
Terrain
Troposphere
Updraft
Upper troposphere
Velocity
Water
Water content
Wave amplitude
Wind
Winter storms
title Vertical Motions Forced by Small-Scale Terrain and Cloud Microphysical Response in Extratropical Precipitation Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertical%20Motions%20Forced%20by%20Small-Scale%20Terrain%20and%20Cloud%20Microphysical%20Response%20in%20Extratropical%20Precipitation%20Systems&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Geerts,%20Bart&rft.date=2023-03&rft.volume=80&rft.issue=3&rft.spage=649&rft.epage=669&rft.pages=649-669&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-22-0161.1&rft_dat=%3Cproquest_cross%3E2806950364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-cfde1bf1ef946c7c39a37315a529557e975ca4e029ef4a358d8b488761f5ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806950364&rft_id=info:pmid/&rfr_iscdi=true