Loading…

An anti-isomorphism between Brauer–Clifford–Long groups BD(S, H) and BD(Sop,H∗)

For a commutative ring R and a commutative cocommutative Hopf algebra H finitely generated projective as an R -module, Tilborghs in (Math J Okayama Univ 32:43–52, 1990), established an anti-isomorphism of groups between the Brauer group BD ( R ,  H ) of H -dimodule and the Brauer B D ( R , H ∗ ) of...

Full description

Saved in:
Bibliographic Details
Published in:Beiträge zur Algebra und Geometrie 2023-06, Vol.64 (2), p.445-458
Main Author: Nango, Christophe Lopez
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-604c86943c12f33bd4f5ad46d7c18f4b41c40d1e2fac7bf73775de2a53c05f233
cites cdi_FETCH-LOGICAL-c319t-604c86943c12f33bd4f5ad46d7c18f4b41c40d1e2fac7bf73775de2a53c05f233
container_end_page 458
container_issue 2
container_start_page 445
container_title Beiträge zur Algebra und Geometrie
container_volume 64
creator Nango, Christophe Lopez
description For a commutative ring R and a commutative cocommutative Hopf algebra H finitely generated projective as an R -module, Tilborghs in (Math J Okayama Univ 32:43–52, 1990), established an anti-isomorphism of groups between the Brauer group BD ( R ,  H ) of H -dimodule and the Brauer B D ( R , H ∗ ) of H ∗ -dimodule algebras, where H ∗ is the linear dual of H . In this paper, we generalize this result by constructing an anti-isomorphism of groups between BD ( S ,  H ), the Brauer group of dyslectic ( S ,  H )-dimodule algebras and B D ( S op , H ∗ ) , the Brauer group of dyslectic ( S op , H ∗ ) -dimodule algebras, where S is an H -commutative H -dimodule algebra and S op is the opposite algebra of S .
doi_str_mv 10.1007/s13366-022-00641-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807041887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807041887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-604c86943c12f33bd4f5ad46d7c18f4b41c40d1e2fac7bf73775de2a53c05f233</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyRWKhUg4_txO7YlkuRKjFwWa3EsUuqNg52IsTGyM7AyrPwKH0S0haJjemcI33_f6QPoWMgZ0CIOA_AWJJgQikmJOGA2Q7qUBgAJkyyXdQhwCTmksI-OghhTlpKCNFBj8MySsu6wEVwS-erpyIso8zUL8aU0cinjfGrt4_xorDW-bxdp66cRTPvmipEo4vTu_7316TXVuSby1X9yer9s3eI9my6CObod3bRw9Xl_XiCp7fXN-PhFGsGgxonhGuZDDjTQC1jWc5tnOY8yYUGaXnGQXOSg6E21SKzggkR54amMdMktpSxLjrZ9lbePTcm1GruGl-2LxWVRBAOUoqWoltKexeCN1ZVvlim_lUBUWt_autPtf7Uxp9aV7NtKLRwOTP-r_qf1A-2KnRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807041887</pqid></control><display><type>article</type><title>An anti-isomorphism between Brauer–Clifford–Long groups BD(S, H) and BD(Sop,H∗)</title><source>Springer Nature</source><creator>Nango, Christophe Lopez</creator><creatorcontrib>Nango, Christophe Lopez</creatorcontrib><description>For a commutative ring R and a commutative cocommutative Hopf algebra H finitely generated projective as an R -module, Tilborghs in (Math J Okayama Univ 32:43–52, 1990), established an anti-isomorphism of groups between the Brauer group BD ( R ,  H ) of H -dimodule and the Brauer B D ( R , H ∗ ) of H ∗ -dimodule algebras, where H ∗ is the linear dual of H . In this paper, we generalize this result by constructing an anti-isomorphism of groups between BD ( S ,  H ), the Brauer group of dyslectic ( S ,  H )-dimodule algebras and B D ( S op , H ∗ ) , the Brauer group of dyslectic ( S op , H ∗ ) -dimodule algebras, where S is an H -commutative H -dimodule algebra and S op is the opposite algebra of S .</description><identifier>ISSN: 0138-4821</identifier><identifier>EISSN: 2191-0383</identifier><identifier>DOI: 10.1007/s13366-022-00641-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic Geometry ; Commutativity ; Convex and Discrete Geometry ; Geometry ; Group theory ; Isomorphism ; Mathematics ; Mathematics and Statistics ; Original Paper ; Rings (mathematics)</subject><ispartof>Beiträge zur Algebra und Geometrie, 2023-06, Vol.64 (2), p.445-458</ispartof><rights>The Managing Editors 2022</rights><rights>The Managing Editors 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-604c86943c12f33bd4f5ad46d7c18f4b41c40d1e2fac7bf73775de2a53c05f233</citedby><cites>FETCH-LOGICAL-c319t-604c86943c12f33bd4f5ad46d7c18f4b41c40d1e2fac7bf73775de2a53c05f233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nango, Christophe Lopez</creatorcontrib><title>An anti-isomorphism between Brauer–Clifford–Long groups BD(S, H) and BD(Sop,H∗)</title><title>Beiträge zur Algebra und Geometrie</title><addtitle>Beitr Algebra Geom</addtitle><description>For a commutative ring R and a commutative cocommutative Hopf algebra H finitely generated projective as an R -module, Tilborghs in (Math J Okayama Univ 32:43–52, 1990), established an anti-isomorphism of groups between the Brauer group BD ( R ,  H ) of H -dimodule and the Brauer B D ( R , H ∗ ) of H ∗ -dimodule algebras, where H ∗ is the linear dual of H . In this paper, we generalize this result by constructing an anti-isomorphism of groups between BD ( S ,  H ), the Brauer group of dyslectic ( S ,  H )-dimodule algebras and B D ( S op , H ∗ ) , the Brauer group of dyslectic ( S op , H ∗ ) -dimodule algebras, where S is an H -commutative H -dimodule algebra and S op is the opposite algebra of S .</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Commutativity</subject><subject>Convex and Discrete Geometry</subject><subject>Geometry</subject><subject>Group theory</subject><subject>Isomorphism</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Rings (mathematics)</subject><issn>0138-4821</issn><issn>2191-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyRWKhUg4_txO7YlkuRKjFwWa3EsUuqNg52IsTGyM7AyrPwKH0S0haJjemcI33_f6QPoWMgZ0CIOA_AWJJgQikmJOGA2Q7qUBgAJkyyXdQhwCTmksI-OghhTlpKCNFBj8MySsu6wEVwS-erpyIso8zUL8aU0cinjfGrt4_xorDW-bxdp66cRTPvmipEo4vTu_7316TXVuSby1X9yer9s3eI9my6CObod3bRw9Xl_XiCp7fXN-PhFGsGgxonhGuZDDjTQC1jWc5tnOY8yYUGaXnGQXOSg6E21SKzggkR54amMdMktpSxLjrZ9lbePTcm1GruGl-2LxWVRBAOUoqWoltKexeCN1ZVvlim_lUBUWt_autPtf7Uxp9aV7NtKLRwOTP-r_qf1A-2KnRk</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Nango, Christophe Lopez</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>An anti-isomorphism between Brauer–Clifford–Long groups BD(S, H) and BD(Sop,H∗)</title><author>Nango, Christophe Lopez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-604c86943c12f33bd4f5ad46d7c18f4b41c40d1e2fac7bf73775de2a53c05f233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Commutativity</topic><topic>Convex and Discrete Geometry</topic><topic>Geometry</topic><topic>Group theory</topic><topic>Isomorphism</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nango, Christophe Lopez</creatorcontrib><collection>CrossRef</collection><jtitle>Beiträge zur Algebra und Geometrie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nango, Christophe Lopez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An anti-isomorphism between Brauer–Clifford–Long groups BD(S, H) and BD(Sop,H∗)</atitle><jtitle>Beiträge zur Algebra und Geometrie</jtitle><stitle>Beitr Algebra Geom</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>64</volume><issue>2</issue><spage>445</spage><epage>458</epage><pages>445-458</pages><issn>0138-4821</issn><eissn>2191-0383</eissn><abstract>For a commutative ring R and a commutative cocommutative Hopf algebra H finitely generated projective as an R -module, Tilborghs in (Math J Okayama Univ 32:43–52, 1990), established an anti-isomorphism of groups between the Brauer group BD ( R ,  H ) of H -dimodule and the Brauer B D ( R , H ∗ ) of H ∗ -dimodule algebras, where H ∗ is the linear dual of H . In this paper, we generalize this result by constructing an anti-isomorphism of groups between BD ( S ,  H ), the Brauer group of dyslectic ( S ,  H )-dimodule algebras and B D ( S op , H ∗ ) , the Brauer group of dyslectic ( S op , H ∗ ) -dimodule algebras, where S is an H -commutative H -dimodule algebra and S op is the opposite algebra of S .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13366-022-00641-3</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0138-4821
ispartof Beiträge zur Algebra und Geometrie, 2023-06, Vol.64 (2), p.445-458
issn 0138-4821
2191-0383
language eng
recordid cdi_proquest_journals_2807041887
source Springer Nature
subjects Algebra
Algebraic Geometry
Commutativity
Convex and Discrete Geometry
Geometry
Group theory
Isomorphism
Mathematics
Mathematics and Statistics
Original Paper
Rings (mathematics)
title An anti-isomorphism between Brauer–Clifford–Long groups BD(S, H) and BD(Sop,H∗)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20anti-isomorphism%20between%20Brauer%E2%80%93Clifford%E2%80%93Long%20groups%20BD(S,%C2%A0H)%20and%20BD(Sop,H%E2%88%97)&rft.jtitle=Beitr%C3%A4ge%20zur%20Algebra%20und%20Geometrie&rft.au=Nango,%20Christophe%20Lopez&rft.date=2023-06-01&rft.volume=64&rft.issue=2&rft.spage=445&rft.epage=458&rft.pages=445-458&rft.issn=0138-4821&rft.eissn=2191-0383&rft_id=info:doi/10.1007/s13366-022-00641-3&rft_dat=%3Cproquest_cross%3E2807041887%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-604c86943c12f33bd4f5ad46d7c18f4b41c40d1e2fac7bf73775de2a53c05f233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2807041887&rft_id=info:pmid/&rfr_iscdi=true