Loading…
Exact and approximate computation of critical values of the largest root test in high dimension
The difficulty to efficiently compute the null distribution of the largest eigenvalue of a MANOVA matrix has hindered the wider applicability of Roy's Largest Root Test (RLRT) though it was proposed over six decades ago. Recent progress made by Johnstone, Butler and Paige and Chiani has greatly...
Saved in:
Published in: | Communications in statistics. Simulation and computation 2023-05, Vol.52 (5), p.2177-2193 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-98ecb995ec58c4a4747184bf525b5d2a4d16a993d16cf7f9dcec23bfd10653ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-98ecb995ec58c4a4747184bf525b5d2a4d16a993d16cf7f9dcec23bfd10653ff3 |
container_end_page | 2193 |
container_issue | 5 |
container_start_page | 2177 |
container_title | Communications in statistics. Simulation and computation |
container_volume | 52 |
creator | Ang, Gregory Tai Xiang Bai, Zhidong Choi, Kwok Pui Fujikoshi, Yasunori Hu, Jiang |
description | The difficulty to efficiently compute the null distribution of the largest eigenvalue of a MANOVA matrix has hindered the wider applicability of Roy's Largest Root Test (RLRT) though it was proposed over six decades ago. Recent progress made by Johnstone, Butler and Paige and Chiani has greatly simplified the approximate and exact computation of the critical values of RLRT. When datasets are high dimensional (HD), Chiani's numerical algorithm of exact computation may not give reliable results due to truncation error, and Johnstone's approximation method via Tracy-Widom distribution is likely to give a good approximation. In this paper, we conduct comparative studies to study in which region the exact method gives reliable numerical values, and in which region Johnstone's method gives a good quality approximation. We formulate recommendations to inform practitioners of RLRT. We also conduct simulation studies in the high dimensional setting to examine the robustness of RLRT against normality assumption in populations. Our study provides support of RLRT robustness against non-normality in HD. |
doi_str_mv | 10.1080/03610918.2021.1900247 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2807217292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807217292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-98ecb995ec58c4a4747184bf525b5d2a4d16a993d16cf7f9dcec23bfd10653ff3</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4EIeB5az67yU0p9QMKXvQcstmkTdlu1iTV-u_N0nr1NI_HzLw3A8AtRjOMBLpHdI6RxGJGEMEzLBEirD4DE8wpqRhm-BxMRk41ki7BVUpbhBAVTEyAWh60yVD3LdTDEMPB73S20ITdsM86-9DD4KCJPnujO_ilu71N4ypvLOx0XNuUYQwhwzxOvocbv97A1u9sn4r6Glw43SV7c8Ip-Hhavi9eqtXb8-vicVUZhliupLCmkZJbw4VhmtWsxoI1jhPe8JZo1uK5lpIWMK52sjXWENq4FqM5p87RKbg7-pYMn-XFrLZhH_tyUhGBaoJrIklh8SPLxJBStE4NsQSOPwojNXap_rpUY5fq1GXRPRx1vnch7vR3iF2rsv7pQnRR98YnRf-3-AX_t3wJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807217292</pqid></control><display><type>article</type><title>Exact and approximate computation of critical values of the largest root test in high dimension</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Ang, Gregory Tai Xiang ; Bai, Zhidong ; Choi, Kwok Pui ; Fujikoshi, Yasunori ; Hu, Jiang</creator><creatorcontrib>Ang, Gregory Tai Xiang ; Bai, Zhidong ; Choi, Kwok Pui ; Fujikoshi, Yasunori ; Hu, Jiang</creatorcontrib><description>The difficulty to efficiently compute the null distribution of the largest eigenvalue of a MANOVA matrix has hindered the wider applicability of Roy's Largest Root Test (RLRT) though it was proposed over six decades ago. Recent progress made by Johnstone, Butler and Paige and Chiani has greatly simplified the approximate and exact computation of the critical values of RLRT. When datasets are high dimensional (HD), Chiani's numerical algorithm of exact computation may not give reliable results due to truncation error, and Johnstone's approximation method via Tracy-Widom distribution is likely to give a good approximation. In this paper, we conduct comparative studies to study in which region the exact method gives reliable numerical values, and in which region Johnstone's method gives a good quality approximation. We formulate recommendations to inform practitioners of RLRT. We also conduct simulation studies in the high dimensional setting to examine the robustness of RLRT against normality assumption in populations. Our study provides support of RLRT robustness against non-normality in HD.</description><identifier>ISSN: 0361-0918</identifier><identifier>EISSN: 1532-4141</identifier><identifier>DOI: 10.1080/03610918.2021.1900247</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Algorithms ; Approximation ; Comparative studies ; Computation ; Critical values ; Eigenvalues ; High dimension ; MANOVA ; Mathematical analysis ; Numerical analysis ; Robustness ; Robustness (mathematics) ; Roy's largest root test ; Tracy-Widom distribution ; Truncation errors</subject><ispartof>Communications in statistics. Simulation and computation, 2023-05, Vol.52 (5), p.2177-2193</ispartof><rights>2021 Taylor & Francis Group, LLC 2021</rights><rights>2021 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-98ecb995ec58c4a4747184bf525b5d2a4d16a993d16cf7f9dcec23bfd10653ff3</citedby><cites>FETCH-LOGICAL-c404t-98ecb995ec58c4a4747184bf525b5d2a4d16a993d16cf7f9dcec23bfd10653ff3</cites><orcidid>0000-0001-5603-2798 ; 0000-0001-7809-8237 ; 0000-0002-5300-5513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ang, Gregory Tai Xiang</creatorcontrib><creatorcontrib>Bai, Zhidong</creatorcontrib><creatorcontrib>Choi, Kwok Pui</creatorcontrib><creatorcontrib>Fujikoshi, Yasunori</creatorcontrib><creatorcontrib>Hu, Jiang</creatorcontrib><title>Exact and approximate computation of critical values of the largest root test in high dimension</title><title>Communications in statistics. Simulation and computation</title><description>The difficulty to efficiently compute the null distribution of the largest eigenvalue of a MANOVA matrix has hindered the wider applicability of Roy's Largest Root Test (RLRT) though it was proposed over six decades ago. Recent progress made by Johnstone, Butler and Paige and Chiani has greatly simplified the approximate and exact computation of the critical values of RLRT. When datasets are high dimensional (HD), Chiani's numerical algorithm of exact computation may not give reliable results due to truncation error, and Johnstone's approximation method via Tracy-Widom distribution is likely to give a good approximation. In this paper, we conduct comparative studies to study in which region the exact method gives reliable numerical values, and in which region Johnstone's method gives a good quality approximation. We formulate recommendations to inform practitioners of RLRT. We also conduct simulation studies in the high dimensional setting to examine the robustness of RLRT against normality assumption in populations. Our study provides support of RLRT robustness against non-normality in HD.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Comparative studies</subject><subject>Computation</subject><subject>Critical values</subject><subject>Eigenvalues</subject><subject>High dimension</subject><subject>MANOVA</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Roy's largest root test</subject><subject>Tracy-Widom distribution</subject><subject>Truncation errors</subject><issn>0361-0918</issn><issn>1532-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4EIeB5az67yU0p9QMKXvQcstmkTdlu1iTV-u_N0nr1NI_HzLw3A8AtRjOMBLpHdI6RxGJGEMEzLBEirD4DE8wpqRhm-BxMRk41ki7BVUpbhBAVTEyAWh60yVD3LdTDEMPB73S20ITdsM86-9DD4KCJPnujO_ilu71N4ypvLOx0XNuUYQwhwzxOvocbv97A1u9sn4r6Glw43SV7c8Ip-Hhavi9eqtXb8-vicVUZhliupLCmkZJbw4VhmtWsxoI1jhPe8JZo1uK5lpIWMK52sjXWENq4FqM5p87RKbg7-pYMn-XFrLZhH_tyUhGBaoJrIklh8SPLxJBStE4NsQSOPwojNXap_rpUY5fq1GXRPRx1vnch7vR3iF2rsv7pQnRR98YnRf-3-AX_t3wJ</recordid><startdate>20230504</startdate><enddate>20230504</enddate><creator>Ang, Gregory Tai Xiang</creator><creator>Bai, Zhidong</creator><creator>Choi, Kwok Pui</creator><creator>Fujikoshi, Yasunori</creator><creator>Hu, Jiang</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5603-2798</orcidid><orcidid>https://orcid.org/0000-0001-7809-8237</orcidid><orcidid>https://orcid.org/0000-0002-5300-5513</orcidid></search><sort><creationdate>20230504</creationdate><title>Exact and approximate computation of critical values of the largest root test in high dimension</title><author>Ang, Gregory Tai Xiang ; Bai, Zhidong ; Choi, Kwok Pui ; Fujikoshi, Yasunori ; Hu, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-98ecb995ec58c4a4747184bf525b5d2a4d16a993d16cf7f9dcec23bfd10653ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Comparative studies</topic><topic>Computation</topic><topic>Critical values</topic><topic>Eigenvalues</topic><topic>High dimension</topic><topic>MANOVA</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Roy's largest root test</topic><topic>Tracy-Widom distribution</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ang, Gregory Tai Xiang</creatorcontrib><creatorcontrib>Bai, Zhidong</creatorcontrib><creatorcontrib>Choi, Kwok Pui</creatorcontrib><creatorcontrib>Fujikoshi, Yasunori</creatorcontrib><creatorcontrib>Hu, Jiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Simulation and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ang, Gregory Tai Xiang</au><au>Bai, Zhidong</au><au>Choi, Kwok Pui</au><au>Fujikoshi, Yasunori</au><au>Hu, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact and approximate computation of critical values of the largest root test in high dimension</atitle><jtitle>Communications in statistics. Simulation and computation</jtitle><date>2023-05-04</date><risdate>2023</risdate><volume>52</volume><issue>5</issue><spage>2177</spage><epage>2193</epage><pages>2177-2193</pages><issn>0361-0918</issn><eissn>1532-4141</eissn><abstract>The difficulty to efficiently compute the null distribution of the largest eigenvalue of a MANOVA matrix has hindered the wider applicability of Roy's Largest Root Test (RLRT) though it was proposed over six decades ago. Recent progress made by Johnstone, Butler and Paige and Chiani has greatly simplified the approximate and exact computation of the critical values of RLRT. When datasets are high dimensional (HD), Chiani's numerical algorithm of exact computation may not give reliable results due to truncation error, and Johnstone's approximation method via Tracy-Widom distribution is likely to give a good approximation. In this paper, we conduct comparative studies to study in which region the exact method gives reliable numerical values, and in which region Johnstone's method gives a good quality approximation. We formulate recommendations to inform practitioners of RLRT. We also conduct simulation studies in the high dimensional setting to examine the robustness of RLRT against normality assumption in populations. Our study provides support of RLRT robustness against non-normality in HD.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/03610918.2021.1900247</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5603-2798</orcidid><orcidid>https://orcid.org/0000-0001-7809-8237</orcidid><orcidid>https://orcid.org/0000-0002-5300-5513</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0918 |
ispartof | Communications in statistics. Simulation and computation, 2023-05, Vol.52 (5), p.2177-2193 |
issn | 0361-0918 1532-4141 |
language | eng |
recordid | cdi_proquest_journals_2807217292 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Algorithms Approximation Comparative studies Computation Critical values Eigenvalues High dimension MANOVA Mathematical analysis Numerical analysis Robustness Robustness (mathematics) Roy's largest root test Tracy-Widom distribution Truncation errors |
title | Exact and approximate computation of critical values of the largest root test in high dimension |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20and%20approximate%20computation%20of%20critical%20values%20of%20the%20largest%20root%20test%20in%20high%20dimension&rft.jtitle=Communications%20in%20statistics.%20Simulation%20and%20computation&rft.au=Ang,%20Gregory%20Tai%20Xiang&rft.date=2023-05-04&rft.volume=52&rft.issue=5&rft.spage=2177&rft.epage=2193&rft.pages=2177-2193&rft.issn=0361-0918&rft.eissn=1532-4141&rft_id=info:doi/10.1080/03610918.2021.1900247&rft_dat=%3Cproquest_infor%3E2807217292%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-98ecb995ec58c4a4747184bf525b5d2a4d16a993d16cf7f9dcec23bfd10653ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2807217292&rft_id=info:pmid/&rfr_iscdi=true |