Loading…

Exact and approximate computation of critical values of the largest root test in high dimension

The difficulty to efficiently compute the null distribution of the largest eigenvalue of a MANOVA matrix has hindered the wider applicability of Roy's Largest Root Test (RLRT) though it was proposed over six decades ago. Recent progress made by Johnstone, Butler and Paige and Chiani has greatly...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Simulation and computation 2023-05, Vol.52 (5), p.2177-2193
Main Authors: Ang, Gregory Tai Xiang, Bai, Zhidong, Choi, Kwok Pui, Fujikoshi, Yasunori, Hu, Jiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-98ecb995ec58c4a4747184bf525b5d2a4d16a993d16cf7f9dcec23bfd10653ff3
cites cdi_FETCH-LOGICAL-c404t-98ecb995ec58c4a4747184bf525b5d2a4d16a993d16cf7f9dcec23bfd10653ff3
container_end_page 2193
container_issue 5
container_start_page 2177
container_title Communications in statistics. Simulation and computation
container_volume 52
creator Ang, Gregory Tai Xiang
Bai, Zhidong
Choi, Kwok Pui
Fujikoshi, Yasunori
Hu, Jiang
description The difficulty to efficiently compute the null distribution of the largest eigenvalue of a MANOVA matrix has hindered the wider applicability of Roy's Largest Root Test (RLRT) though it was proposed over six decades ago. Recent progress made by Johnstone, Butler and Paige and Chiani has greatly simplified the approximate and exact computation of the critical values of RLRT. When datasets are high dimensional (HD), Chiani's numerical algorithm of exact computation may not give reliable results due to truncation error, and Johnstone's approximation method via Tracy-Widom distribution is likely to give a good approximation. In this paper, we conduct comparative studies to study in which region the exact method gives reliable numerical values, and in which region Johnstone's method gives a good quality approximation. We formulate recommendations to inform practitioners of RLRT. We also conduct simulation studies in the high dimensional setting to examine the robustness of RLRT against normality assumption in populations. Our study provides support of RLRT robustness against non-normality in HD.
doi_str_mv 10.1080/03610918.2021.1900247
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2807217292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807217292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-98ecb995ec58c4a4747184bf525b5d2a4d16a993d16cf7f9dcec23bfd10653ff3</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4EIeB5az67yU0p9QMKXvQcstmkTdlu1iTV-u_N0nr1NI_HzLw3A8AtRjOMBLpHdI6RxGJGEMEzLBEirD4DE8wpqRhm-BxMRk41ki7BVUpbhBAVTEyAWh60yVD3LdTDEMPB73S20ITdsM86-9DD4KCJPnujO_ilu71N4ypvLOx0XNuUYQwhwzxOvocbv97A1u9sn4r6Glw43SV7c8Ip-Hhavi9eqtXb8-vicVUZhliupLCmkZJbw4VhmtWsxoI1jhPe8JZo1uK5lpIWMK52sjXWENq4FqM5p87RKbg7-pYMn-XFrLZhH_tyUhGBaoJrIklh8SPLxJBStE4NsQSOPwojNXap_rpUY5fq1GXRPRx1vnch7vR3iF2rsv7pQnRR98YnRf-3-AX_t3wJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807217292</pqid></control><display><type>article</type><title>Exact and approximate computation of critical values of the largest root test in high dimension</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Ang, Gregory Tai Xiang ; Bai, Zhidong ; Choi, Kwok Pui ; Fujikoshi, Yasunori ; Hu, Jiang</creator><creatorcontrib>Ang, Gregory Tai Xiang ; Bai, Zhidong ; Choi, Kwok Pui ; Fujikoshi, Yasunori ; Hu, Jiang</creatorcontrib><description>The difficulty to efficiently compute the null distribution of the largest eigenvalue of a MANOVA matrix has hindered the wider applicability of Roy's Largest Root Test (RLRT) though it was proposed over six decades ago. Recent progress made by Johnstone, Butler and Paige and Chiani has greatly simplified the approximate and exact computation of the critical values of RLRT. When datasets are high dimensional (HD), Chiani's numerical algorithm of exact computation may not give reliable results due to truncation error, and Johnstone's approximation method via Tracy-Widom distribution is likely to give a good approximation. In this paper, we conduct comparative studies to study in which region the exact method gives reliable numerical values, and in which region Johnstone's method gives a good quality approximation. We formulate recommendations to inform practitioners of RLRT. We also conduct simulation studies in the high dimensional setting to examine the robustness of RLRT against normality assumption in populations. Our study provides support of RLRT robustness against non-normality in HD.</description><identifier>ISSN: 0361-0918</identifier><identifier>EISSN: 1532-4141</identifier><identifier>DOI: 10.1080/03610918.2021.1900247</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Algorithms ; Approximation ; Comparative studies ; Computation ; Critical values ; Eigenvalues ; High dimension ; MANOVA ; Mathematical analysis ; Numerical analysis ; Robustness ; Robustness (mathematics) ; Roy's largest root test ; Tracy-Widom distribution ; Truncation errors</subject><ispartof>Communications in statistics. Simulation and computation, 2023-05, Vol.52 (5), p.2177-2193</ispartof><rights>2021 Taylor &amp; Francis Group, LLC 2021</rights><rights>2021 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-98ecb995ec58c4a4747184bf525b5d2a4d16a993d16cf7f9dcec23bfd10653ff3</citedby><cites>FETCH-LOGICAL-c404t-98ecb995ec58c4a4747184bf525b5d2a4d16a993d16cf7f9dcec23bfd10653ff3</cites><orcidid>0000-0001-5603-2798 ; 0000-0001-7809-8237 ; 0000-0002-5300-5513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ang, Gregory Tai Xiang</creatorcontrib><creatorcontrib>Bai, Zhidong</creatorcontrib><creatorcontrib>Choi, Kwok Pui</creatorcontrib><creatorcontrib>Fujikoshi, Yasunori</creatorcontrib><creatorcontrib>Hu, Jiang</creatorcontrib><title>Exact and approximate computation of critical values of the largest root test in high dimension</title><title>Communications in statistics. Simulation and computation</title><description>The difficulty to efficiently compute the null distribution of the largest eigenvalue of a MANOVA matrix has hindered the wider applicability of Roy's Largest Root Test (RLRT) though it was proposed over six decades ago. Recent progress made by Johnstone, Butler and Paige and Chiani has greatly simplified the approximate and exact computation of the critical values of RLRT. When datasets are high dimensional (HD), Chiani's numerical algorithm of exact computation may not give reliable results due to truncation error, and Johnstone's approximation method via Tracy-Widom distribution is likely to give a good approximation. In this paper, we conduct comparative studies to study in which region the exact method gives reliable numerical values, and in which region Johnstone's method gives a good quality approximation. We formulate recommendations to inform practitioners of RLRT. We also conduct simulation studies in the high dimensional setting to examine the robustness of RLRT against normality assumption in populations. Our study provides support of RLRT robustness against non-normality in HD.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Comparative studies</subject><subject>Computation</subject><subject>Critical values</subject><subject>Eigenvalues</subject><subject>High dimension</subject><subject>MANOVA</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Roy's largest root test</subject><subject>Tracy-Widom distribution</subject><subject>Truncation errors</subject><issn>0361-0918</issn><issn>1532-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4EIeB5az67yU0p9QMKXvQcstmkTdlu1iTV-u_N0nr1NI_HzLw3A8AtRjOMBLpHdI6RxGJGEMEzLBEirD4DE8wpqRhm-BxMRk41ki7BVUpbhBAVTEyAWh60yVD3LdTDEMPB73S20ITdsM86-9DD4KCJPnujO_ilu71N4ypvLOx0XNuUYQwhwzxOvocbv97A1u9sn4r6Glw43SV7c8Ip-Hhavi9eqtXb8-vicVUZhliupLCmkZJbw4VhmtWsxoI1jhPe8JZo1uK5lpIWMK52sjXWENq4FqM5p87RKbg7-pYMn-XFrLZhH_tyUhGBaoJrIklh8SPLxJBStE4NsQSOPwojNXap_rpUY5fq1GXRPRx1vnch7vR3iF2rsv7pQnRR98YnRf-3-AX_t3wJ</recordid><startdate>20230504</startdate><enddate>20230504</enddate><creator>Ang, Gregory Tai Xiang</creator><creator>Bai, Zhidong</creator><creator>Choi, Kwok Pui</creator><creator>Fujikoshi, Yasunori</creator><creator>Hu, Jiang</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5603-2798</orcidid><orcidid>https://orcid.org/0000-0001-7809-8237</orcidid><orcidid>https://orcid.org/0000-0002-5300-5513</orcidid></search><sort><creationdate>20230504</creationdate><title>Exact and approximate computation of critical values of the largest root test in high dimension</title><author>Ang, Gregory Tai Xiang ; Bai, Zhidong ; Choi, Kwok Pui ; Fujikoshi, Yasunori ; Hu, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-98ecb995ec58c4a4747184bf525b5d2a4d16a993d16cf7f9dcec23bfd10653ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Comparative studies</topic><topic>Computation</topic><topic>Critical values</topic><topic>Eigenvalues</topic><topic>High dimension</topic><topic>MANOVA</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Roy's largest root test</topic><topic>Tracy-Widom distribution</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ang, Gregory Tai Xiang</creatorcontrib><creatorcontrib>Bai, Zhidong</creatorcontrib><creatorcontrib>Choi, Kwok Pui</creatorcontrib><creatorcontrib>Fujikoshi, Yasunori</creatorcontrib><creatorcontrib>Hu, Jiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Simulation and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ang, Gregory Tai Xiang</au><au>Bai, Zhidong</au><au>Choi, Kwok Pui</au><au>Fujikoshi, Yasunori</au><au>Hu, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact and approximate computation of critical values of the largest root test in high dimension</atitle><jtitle>Communications in statistics. Simulation and computation</jtitle><date>2023-05-04</date><risdate>2023</risdate><volume>52</volume><issue>5</issue><spage>2177</spage><epage>2193</epage><pages>2177-2193</pages><issn>0361-0918</issn><eissn>1532-4141</eissn><abstract>The difficulty to efficiently compute the null distribution of the largest eigenvalue of a MANOVA matrix has hindered the wider applicability of Roy's Largest Root Test (RLRT) though it was proposed over six decades ago. Recent progress made by Johnstone, Butler and Paige and Chiani has greatly simplified the approximate and exact computation of the critical values of RLRT. When datasets are high dimensional (HD), Chiani's numerical algorithm of exact computation may not give reliable results due to truncation error, and Johnstone's approximation method via Tracy-Widom distribution is likely to give a good approximation. In this paper, we conduct comparative studies to study in which region the exact method gives reliable numerical values, and in which region Johnstone's method gives a good quality approximation. We formulate recommendations to inform practitioners of RLRT. We also conduct simulation studies in the high dimensional setting to examine the robustness of RLRT against normality assumption in populations. Our study provides support of RLRT robustness against non-normality in HD.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03610918.2021.1900247</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5603-2798</orcidid><orcidid>https://orcid.org/0000-0001-7809-8237</orcidid><orcidid>https://orcid.org/0000-0002-5300-5513</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-0918
ispartof Communications in statistics. Simulation and computation, 2023-05, Vol.52 (5), p.2177-2193
issn 0361-0918
1532-4141
language eng
recordid cdi_proquest_journals_2807217292
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Algorithms
Approximation
Comparative studies
Computation
Critical values
Eigenvalues
High dimension
MANOVA
Mathematical analysis
Numerical analysis
Robustness
Robustness (mathematics)
Roy's largest root test
Tracy-Widom distribution
Truncation errors
title Exact and approximate computation of critical values of the largest root test in high dimension
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20and%20approximate%20computation%20of%20critical%20values%20of%20the%20largest%20root%20test%20in%20high%20dimension&rft.jtitle=Communications%20in%20statistics.%20Simulation%20and%20computation&rft.au=Ang,%20Gregory%20Tai%20Xiang&rft.date=2023-05-04&rft.volume=52&rft.issue=5&rft.spage=2177&rft.epage=2193&rft.pages=2177-2193&rft.issn=0361-0918&rft.eissn=1532-4141&rft_id=info:doi/10.1080/03610918.2021.1900247&rft_dat=%3Cproquest_infor%3E2807217292%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-98ecb995ec58c4a4747184bf525b5d2a4d16a993d16cf7f9dcec23bfd10653ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2807217292&rft_id=info:pmid/&rfr_iscdi=true