Loading…

Existence of bounded solutions for a class of singular elliptic problems involving the 1-Laplacian operator

In this work we study existence and regularity of solutions to problems which are modeled by - Δ p u + u | ∇ u | p = f h ( u ) in Ω , u = 0 on ∂ Ω . Here Ω is an open bounded subset of R N ( N ≥ 2 ) with Lipschitz boundary, Δ p u : = div ( | ∇ u | p - 2 ∇ u ) ( 1 ≤ p < N ) is the p-Laplacian oper...

Full description

Saved in:
Bibliographic Details
Published in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2023-07, Vol.117 (3), Article 111
Main Authors: El Hichami, Mohamed, El Hadfi, Youssef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-db6236403ce4173c521c099c7f42708c87afc5eb055446d42b1987b07e5e06ee3
container_end_page
container_issue 3
container_start_page
container_title Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas
container_volume 117
creator El Hichami, Mohamed
El Hadfi, Youssef
description In this work we study existence and regularity of solutions to problems which are modeled by - Δ p u + u | ∇ u | p = f h ( u ) in Ω , u = 0 on ∂ Ω . Here Ω is an open bounded subset of R N ( N ≥ 2 ) with Lipschitz boundary, Δ p u : = div ( | ∇ u | p - 2 ∇ u ) ( 1 ≤ p < N ) is the p-Laplacian operator, f ∈ L q ( Ω ) ( q > N p ) is a nonnegative function and h is a continuous real function that may possibly blow up at zero.
doi_str_mv 10.1007/s13398-023-01444-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807399749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807399749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-db6236403ce4173c521c099c7f42708c87afc5eb055446d42b1987b07e5e06ee3</originalsourceid><addsrcrecordid>eNp9UEtLAzEQXkTBUvsHPAU8R5NNttkcpdQHFLzoOWSzszU1TdZkt-i_N-0K3pzLDHyPmfmK4pqSW0qIuEuUMVljUjJMKOcc87NiRishMa1IdX6aaywYYZfFIqUdycUor4mYFR_rL5sG8AZQ6FATRt9Ci1Jw42CDT6gLEWlknE7pSEjWb0enIwLnbD9Yg_oYGgf7hKw_BHfIOBreAVG80b3TxmqPQg9RDyFeFReddgkWv31evD2sX1dPePPy-Ly632BTCjLgtlmWbMkJM8CpYKYqqSFSGtHxjNemFrozFTSkqjhftrxsqKxFQwRUQJYAbF7cTL75ts8R0qB2YYw-r1RlfppJKbjMrHJimRhSitCpPtq9jt-KEnXMVU25qpyrOuWqeBaxSZQy2W8h_ln_o_oBvBF7Ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807399749</pqid></control><display><type>article</type><title>Existence of bounded solutions for a class of singular elliptic problems involving the 1-Laplacian operator</title><source>Springer Nature</source><creator>El Hichami, Mohamed ; El Hadfi, Youssef</creator><creatorcontrib>El Hichami, Mohamed ; El Hadfi, Youssef</creatorcontrib><description>In this work we study existence and regularity of solutions to problems which are modeled by - Δ p u + u | ∇ u | p = f h ( u ) in Ω , u = 0 on ∂ Ω . Here Ω is an open bounded subset of R N ( N ≥ 2 ) with Lipschitz boundary, Δ p u : = div ( | ∇ u | p - 2 ∇ u ) ( 1 ≤ p &lt; N ) is the p-Laplacian operator, f ∈ L q ( Ω ) ( q &gt; N p ) is a nonnegative function and h is a continuous real function that may possibly blow up at zero.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-023-01444-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Continuity (mathematics) ; Laplace transforms ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Original Paper ; Theoretical</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2023-07, Vol.117 (3), Article 111</ispartof><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-db6236403ce4173c521c099c7f42708c87afc5eb055446d42b1987b07e5e06ee3</cites><orcidid>0000-0003-4483-2709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>El Hichami, Mohamed</creatorcontrib><creatorcontrib>El Hadfi, Youssef</creatorcontrib><title>Existence of bounded solutions for a class of singular elliptic problems involving the 1-Laplacian operator</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</addtitle><description>In this work we study existence and regularity of solutions to problems which are modeled by - Δ p u + u | ∇ u | p = f h ( u ) in Ω , u = 0 on ∂ Ω . Here Ω is an open bounded subset of R N ( N ≥ 2 ) with Lipschitz boundary, Δ p u : = div ( | ∇ u | p - 2 ∇ u ) ( 1 ≤ p &lt; N ) is the p-Laplacian operator, f ∈ L q ( Ω ) ( q &gt; N p ) is a nonnegative function and h is a continuous real function that may possibly blow up at zero.</description><subject>Applications of Mathematics</subject><subject>Continuity (mathematics)</subject><subject>Laplace transforms</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLAzEQXkTBUvsHPAU8R5NNttkcpdQHFLzoOWSzszU1TdZkt-i_N-0K3pzLDHyPmfmK4pqSW0qIuEuUMVljUjJMKOcc87NiRishMa1IdX6aaywYYZfFIqUdycUor4mYFR_rL5sG8AZQ6FATRt9Ci1Jw42CDT6gLEWlknE7pSEjWb0enIwLnbD9Yg_oYGgf7hKw_BHfIOBreAVG80b3TxmqPQg9RDyFeFReddgkWv31evD2sX1dPePPy-Ly632BTCjLgtlmWbMkJM8CpYKYqqSFSGtHxjNemFrozFTSkqjhftrxsqKxFQwRUQJYAbF7cTL75ts8R0qB2YYw-r1RlfppJKbjMrHJimRhSitCpPtq9jt-KEnXMVU25qpyrOuWqeBaxSZQy2W8h_ln_o_oBvBF7Ug</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>El Hichami, Mohamed</creator><creator>El Hadfi, Youssef</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4483-2709</orcidid></search><sort><creationdate>20230701</creationdate><title>Existence of bounded solutions for a class of singular elliptic problems involving the 1-Laplacian operator</title><author>El Hichami, Mohamed ; El Hadfi, Youssef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-db6236403ce4173c521c099c7f42708c87afc5eb055446d42b1987b07e5e06ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Continuity (mathematics)</topic><topic>Laplace transforms</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Hichami, Mohamed</creatorcontrib><creatorcontrib>El Hadfi, Youssef</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Hichami, Mohamed</au><au>El Hadfi, Youssef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of bounded solutions for a class of singular elliptic problems involving the 1-Laplacian operator</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>117</volume><issue>3</issue><artnum>111</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>In this work we study existence and regularity of solutions to problems which are modeled by - Δ p u + u | ∇ u | p = f h ( u ) in Ω , u = 0 on ∂ Ω . Here Ω is an open bounded subset of R N ( N ≥ 2 ) with Lipschitz boundary, Δ p u : = div ( | ∇ u | p - 2 ∇ u ) ( 1 ≤ p &lt; N ) is the p-Laplacian operator, f ∈ L q ( Ω ) ( q &gt; N p ) is a nonnegative function and h is a continuous real function that may possibly blow up at zero.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-023-01444-4</doi><orcidid>https://orcid.org/0000-0003-4483-2709</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1578-7303
ispartof Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2023-07, Vol.117 (3), Article 111
issn 1578-7303
1579-1505
language eng
recordid cdi_proquest_journals_2807399749
source Springer Nature
subjects Applications of Mathematics
Continuity (mathematics)
Laplace transforms
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
Original Paper
Theoretical
title Existence of bounded solutions for a class of singular elliptic problems involving the 1-Laplacian operator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20bounded%20solutions%20for%20a%20class%20of%20singular%20elliptic%20problems%20involving%20the%201-Laplacian%20operator&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=El%20Hichami,%20Mohamed&rft.date=2023-07-01&rft.volume=117&rft.issue=3&rft.artnum=111&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-023-01444-4&rft_dat=%3Cproquest_cross%3E2807399749%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-db6236403ce4173c521c099c7f42708c87afc5eb055446d42b1987b07e5e06ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2807399749&rft_id=info:pmid/&rfr_iscdi=true