Loading…
Behavior of soda-lime silicate glass under laser-driven shock compression up to 315 GPa
Shock experiments give a unique insight into the behavior of matter subjected to extremely high pressures and temperatures. Understanding the behavior of materials under such extreme conditions is key to modeling material failure and deformation dynamics under impact. While studies on pure silica ar...
Saved in:
Published in: | Journal of applied physics 2023-05, Vol.133 (17) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-b7a91960078ab630ea6ec339dc48a02c057e14bbd14222c73d6ad71b9336522f3 |
container_end_page | |
container_issue | 17 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 133 |
creator | Madhavi, Meera Jangid, Rahul Christiansen-Salameh, Joyce Cheng, Yu-Hsing Rao, Pooja Li, Jianheng Teja Botu, Surya Jeppson, Spencer Mehta, Jugal Smith, Scott Isobe, Jared T. Hok, Sovanndara Saha, Rahul Cunningham, Eric Heimann, Philip Khaghani, Dimitri Lee, Hae Ja Spaulding, D. K. Polsin, Danae N. Gleason, Arianna E. Kukreja, Roopali |
description | Shock experiments give a unique insight into the behavior of matter subjected to extremely high pressures and temperatures. Understanding the behavior of materials under such extreme conditions is key to modeling material failure and deformation dynamics under impact. While studies on pure silica are extensive, the shock behavior of other commercial silicates that contain additional oxides has not been systematically investigated. To better understand the role of composition in the dynamic behavior of silicates, we performed laser-driven dynamic compression experiments on soda-lime glass (SLG) up to 315 GPa. Using the accurate pulse shaping offered by the long pulse laser system at the Matter in Extreme Conditions end-station at the Linac Coherent Light Source, SLG was shock compressed along the Hugoniot to multiple pressure-temperature points. Velocity Interferometer System for Any Reflector was used to measure the velocity and determine the pressure inside the SLG. The U
s–u
p relationship obtained agrees well with the previous parallel plate impact studies. Within the error bars, no transformation to the crystalline phase was observed up to 70 GPa, which is in contrast to the behavior of pure silica under shock compression. Our studies show that the glass composition strongly influences the shock compression behavior of the silicate glasses. |
doi_str_mv | 10.1063/5.0132114 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2808058605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808058605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b7a91960078ab630ea6ec339dc48a02c057e14bbd14222c73d6ad71b9336522f3</originalsourceid><addsrcrecordid>eNp90LFOwzAQBmALgUQpDLyBBRNIKWc7TuwRKihIlWCAgclyHIe6tHGwk0psrLwmT0KqVjAgMd0Nn_47_QgdExgRyNgFHwFhlJB0Bw0ICJnknMMuGgBQkgiZy310EOMcgBDB5AA9X9mZXjkfsK9w9KVOFm5pcXQLZ3Rr8ctCx4i7urQB96sNSRncytY4zrx5xcYvm2BjdL7GXYNbjxnhXx-fkwd9iPYqvYj2aDuH6Onm-nF8m0zvJ3fjy2liWCrbpMi1JDIDyIUuMgZWZ9YwJkuTCg3UAM8tSYuiJCml1OSszHSZk0IylnFKKzZEJ5tcH1unonGtNTPj69qaVhEpZJZDj043qAn-rbOxVXPfhbr_S1EBArjIgPfqbKNM8DEGW6kmuKUO74qAWteruNrW29vzjV1f1G1fwA9e-fALVVNW_-G_yd8ijodY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808058605</pqid></control><display><type>article</type><title>Behavior of soda-lime silicate glass under laser-driven shock compression up to 315 GPa</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Madhavi, Meera ; Jangid, Rahul ; Christiansen-Salameh, Joyce ; Cheng, Yu-Hsing ; Rao, Pooja ; Li, Jianheng ; Teja Botu, Surya ; Jeppson, Spencer ; Mehta, Jugal ; Smith, Scott ; Isobe, Jared T. ; Hok, Sovanndara ; Saha, Rahul ; Cunningham, Eric ; Heimann, Philip ; Khaghani, Dimitri ; Lee, Hae Ja ; Spaulding, D. K. ; Polsin, Danae N. ; Gleason, Arianna E. ; Kukreja, Roopali</creator><creatorcontrib>Madhavi, Meera ; Jangid, Rahul ; Christiansen-Salameh, Joyce ; Cheng, Yu-Hsing ; Rao, Pooja ; Li, Jianheng ; Teja Botu, Surya ; Jeppson, Spencer ; Mehta, Jugal ; Smith, Scott ; Isobe, Jared T. ; Hok, Sovanndara ; Saha, Rahul ; Cunningham, Eric ; Heimann, Philip ; Khaghani, Dimitri ; Lee, Hae Ja ; Spaulding, D. K. ; Polsin, Danae N. ; Gleason, Arianna E. ; Kukreja, Roopali ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</creatorcontrib><description>Shock experiments give a unique insight into the behavior of matter subjected to extremely high pressures and temperatures. Understanding the behavior of materials under such extreme conditions is key to modeling material failure and deformation dynamics under impact. While studies on pure silica are extensive, the shock behavior of other commercial silicates that contain additional oxides has not been systematically investigated. To better understand the role of composition in the dynamic behavior of silicates, we performed laser-driven dynamic compression experiments on soda-lime glass (SLG) up to 315 GPa. Using the accurate pulse shaping offered by the long pulse laser system at the Matter in Extreme Conditions end-station at the Linac Coherent Light Source, SLG was shock compressed along the Hugoniot to multiple pressure-temperature points. Velocity Interferometer System for Any Reflector was used to measure the velocity and determine the pressure inside the SLG. The U
s–u
p relationship obtained agrees well with the previous parallel plate impact studies. Within the error bars, no transformation to the crystalline phase was observed up to 70 GPa, which is in contrast to the behavior of pure silica under shock compression. Our studies show that the glass composition strongly influences the shock compression behavior of the silicate glasses.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0132114</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Coherent light ; Composition ; Dielectric materials ; Error analysis ; Glass ; Interferometry ; Lasers ; Light sources ; Materials failure ; MATERIALS SCIENCE ; Parallel plates ; Phase transitions ; Shock compression ; Shock waves ; Silica ; Silicates ; Silicon dioxide ; Soda-lime glass</subject><ispartof>Journal of applied physics, 2023-05, Vol.133 (17)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-b7a91960078ab630ea6ec339dc48a02c057e14bbd14222c73d6ad71b9336522f3</cites><orcidid>0000-0002-1493-9612 ; 0000-0002-4053-3237 ; 0000-0002-9511-3221 ; 0000-0001-5286-954X ; 0000-0001-9529-5056 ; 0000-0002-7292-7302 ; 0000-0002-3468-5082 ; 0000-0002-0976-4416 ; 0000-0002-9726-9166 ; 0000-0001-7841-5335 ; 0000-0003-3536-822X ; 0000-0002-6399-6525 ; 0000-0002-9162-8527 ; 0000-0001-8212-7846 ; 0000-0003-0446-5959 ; 0000-0002-2973-664X ; 0000-0002-5139-2310 ; 0000000214939612 ; 0000000182127846 ; 0000000209764416 ; 0000000263996525 ; 0000000272927302 ; 0000000251392310 ; 0000000295113221 ; 0000000304465959 ; 0000000240533237 ; 000000033536822X ; 000000022973664X ; 0000000234685082 ; 0000000291628527 ; 0000000297269166 ; 0000000178415335 ; 000000015286954X ; 0000000195295056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1989670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Madhavi, Meera</creatorcontrib><creatorcontrib>Jangid, Rahul</creatorcontrib><creatorcontrib>Christiansen-Salameh, Joyce</creatorcontrib><creatorcontrib>Cheng, Yu-Hsing</creatorcontrib><creatorcontrib>Rao, Pooja</creatorcontrib><creatorcontrib>Li, Jianheng</creatorcontrib><creatorcontrib>Teja Botu, Surya</creatorcontrib><creatorcontrib>Jeppson, Spencer</creatorcontrib><creatorcontrib>Mehta, Jugal</creatorcontrib><creatorcontrib>Smith, Scott</creatorcontrib><creatorcontrib>Isobe, Jared T.</creatorcontrib><creatorcontrib>Hok, Sovanndara</creatorcontrib><creatorcontrib>Saha, Rahul</creatorcontrib><creatorcontrib>Cunningham, Eric</creatorcontrib><creatorcontrib>Heimann, Philip</creatorcontrib><creatorcontrib>Khaghani, Dimitri</creatorcontrib><creatorcontrib>Lee, Hae Ja</creatorcontrib><creatorcontrib>Spaulding, D. K.</creatorcontrib><creatorcontrib>Polsin, Danae N.</creatorcontrib><creatorcontrib>Gleason, Arianna E.</creatorcontrib><creatorcontrib>Kukreja, Roopali</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</creatorcontrib><title>Behavior of soda-lime silicate glass under laser-driven shock compression up to 315 GPa</title><title>Journal of applied physics</title><description>Shock experiments give a unique insight into the behavior of matter subjected to extremely high pressures and temperatures. Understanding the behavior of materials under such extreme conditions is key to modeling material failure and deformation dynamics under impact. While studies on pure silica are extensive, the shock behavior of other commercial silicates that contain additional oxides has not been systematically investigated. To better understand the role of composition in the dynamic behavior of silicates, we performed laser-driven dynamic compression experiments on soda-lime glass (SLG) up to 315 GPa. Using the accurate pulse shaping offered by the long pulse laser system at the Matter in Extreme Conditions end-station at the Linac Coherent Light Source, SLG was shock compressed along the Hugoniot to multiple pressure-temperature points. Velocity Interferometer System for Any Reflector was used to measure the velocity and determine the pressure inside the SLG. The U
s–u
p relationship obtained agrees well with the previous parallel plate impact studies. Within the error bars, no transformation to the crystalline phase was observed up to 70 GPa, which is in contrast to the behavior of pure silica under shock compression. Our studies show that the glass composition strongly influences the shock compression behavior of the silicate glasses.</description><subject>Applied physics</subject><subject>Coherent light</subject><subject>Composition</subject><subject>Dielectric materials</subject><subject>Error analysis</subject><subject>Glass</subject><subject>Interferometry</subject><subject>Lasers</subject><subject>Light sources</subject><subject>Materials failure</subject><subject>MATERIALS SCIENCE</subject><subject>Parallel plates</subject><subject>Phase transitions</subject><subject>Shock compression</subject><subject>Shock waves</subject><subject>Silica</subject><subject>Silicates</subject><subject>Silicon dioxide</subject><subject>Soda-lime glass</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90LFOwzAQBmALgUQpDLyBBRNIKWc7TuwRKihIlWCAgclyHIe6tHGwk0psrLwmT0KqVjAgMd0Nn_47_QgdExgRyNgFHwFhlJB0Bw0ICJnknMMuGgBQkgiZy310EOMcgBDB5AA9X9mZXjkfsK9w9KVOFm5pcXQLZ3Rr8ctCx4i7urQB96sNSRncytY4zrx5xcYvm2BjdL7GXYNbjxnhXx-fkwd9iPYqvYj2aDuH6Onm-nF8m0zvJ3fjy2liWCrbpMi1JDIDyIUuMgZWZ9YwJkuTCg3UAM8tSYuiJCml1OSszHSZk0IylnFKKzZEJ5tcH1unonGtNTPj69qaVhEpZJZDj043qAn-rbOxVXPfhbr_S1EBArjIgPfqbKNM8DEGW6kmuKUO74qAWteruNrW29vzjV1f1G1fwA9e-fALVVNW_-G_yd8ijodY</recordid><startdate>20230507</startdate><enddate>20230507</enddate><creator>Madhavi, Meera</creator><creator>Jangid, Rahul</creator><creator>Christiansen-Salameh, Joyce</creator><creator>Cheng, Yu-Hsing</creator><creator>Rao, Pooja</creator><creator>Li, Jianheng</creator><creator>Teja Botu, Surya</creator><creator>Jeppson, Spencer</creator><creator>Mehta, Jugal</creator><creator>Smith, Scott</creator><creator>Isobe, Jared T.</creator><creator>Hok, Sovanndara</creator><creator>Saha, Rahul</creator><creator>Cunningham, Eric</creator><creator>Heimann, Philip</creator><creator>Khaghani, Dimitri</creator><creator>Lee, Hae Ja</creator><creator>Spaulding, D. K.</creator><creator>Polsin, Danae N.</creator><creator>Gleason, Arianna E.</creator><creator>Kukreja, Roopali</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1493-9612</orcidid><orcidid>https://orcid.org/0000-0002-4053-3237</orcidid><orcidid>https://orcid.org/0000-0002-9511-3221</orcidid><orcidid>https://orcid.org/0000-0001-5286-954X</orcidid><orcidid>https://orcid.org/0000-0001-9529-5056</orcidid><orcidid>https://orcid.org/0000-0002-7292-7302</orcidid><orcidid>https://orcid.org/0000-0002-3468-5082</orcidid><orcidid>https://orcid.org/0000-0002-0976-4416</orcidid><orcidid>https://orcid.org/0000-0002-9726-9166</orcidid><orcidid>https://orcid.org/0000-0001-7841-5335</orcidid><orcidid>https://orcid.org/0000-0003-3536-822X</orcidid><orcidid>https://orcid.org/0000-0002-6399-6525</orcidid><orcidid>https://orcid.org/0000-0002-9162-8527</orcidid><orcidid>https://orcid.org/0000-0001-8212-7846</orcidid><orcidid>https://orcid.org/0000-0003-0446-5959</orcidid><orcidid>https://orcid.org/0000-0002-2973-664X</orcidid><orcidid>https://orcid.org/0000-0002-5139-2310</orcidid><orcidid>https://orcid.org/0000000214939612</orcidid><orcidid>https://orcid.org/0000000182127846</orcidid><orcidid>https://orcid.org/0000000209764416</orcidid><orcidid>https://orcid.org/0000000263996525</orcidid><orcidid>https://orcid.org/0000000272927302</orcidid><orcidid>https://orcid.org/0000000251392310</orcidid><orcidid>https://orcid.org/0000000295113221</orcidid><orcidid>https://orcid.org/0000000304465959</orcidid><orcidid>https://orcid.org/0000000240533237</orcidid><orcidid>https://orcid.org/000000033536822X</orcidid><orcidid>https://orcid.org/000000022973664X</orcidid><orcidid>https://orcid.org/0000000234685082</orcidid><orcidid>https://orcid.org/0000000291628527</orcidid><orcidid>https://orcid.org/0000000297269166</orcidid><orcidid>https://orcid.org/0000000178415335</orcidid><orcidid>https://orcid.org/000000015286954X</orcidid><orcidid>https://orcid.org/0000000195295056</orcidid></search><sort><creationdate>20230507</creationdate><title>Behavior of soda-lime silicate glass under laser-driven shock compression up to 315 GPa</title><author>Madhavi, Meera ; Jangid, Rahul ; Christiansen-Salameh, Joyce ; Cheng, Yu-Hsing ; Rao, Pooja ; Li, Jianheng ; Teja Botu, Surya ; Jeppson, Spencer ; Mehta, Jugal ; Smith, Scott ; Isobe, Jared T. ; Hok, Sovanndara ; Saha, Rahul ; Cunningham, Eric ; Heimann, Philip ; Khaghani, Dimitri ; Lee, Hae Ja ; Spaulding, D. K. ; Polsin, Danae N. ; Gleason, Arianna E. ; Kukreja, Roopali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b7a91960078ab630ea6ec339dc48a02c057e14bbd14222c73d6ad71b9336522f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Coherent light</topic><topic>Composition</topic><topic>Dielectric materials</topic><topic>Error analysis</topic><topic>Glass</topic><topic>Interferometry</topic><topic>Lasers</topic><topic>Light sources</topic><topic>Materials failure</topic><topic>MATERIALS SCIENCE</topic><topic>Parallel plates</topic><topic>Phase transitions</topic><topic>Shock compression</topic><topic>Shock waves</topic><topic>Silica</topic><topic>Silicates</topic><topic>Silicon dioxide</topic><topic>Soda-lime glass</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madhavi, Meera</creatorcontrib><creatorcontrib>Jangid, Rahul</creatorcontrib><creatorcontrib>Christiansen-Salameh, Joyce</creatorcontrib><creatorcontrib>Cheng, Yu-Hsing</creatorcontrib><creatorcontrib>Rao, Pooja</creatorcontrib><creatorcontrib>Li, Jianheng</creatorcontrib><creatorcontrib>Teja Botu, Surya</creatorcontrib><creatorcontrib>Jeppson, Spencer</creatorcontrib><creatorcontrib>Mehta, Jugal</creatorcontrib><creatorcontrib>Smith, Scott</creatorcontrib><creatorcontrib>Isobe, Jared T.</creatorcontrib><creatorcontrib>Hok, Sovanndara</creatorcontrib><creatorcontrib>Saha, Rahul</creatorcontrib><creatorcontrib>Cunningham, Eric</creatorcontrib><creatorcontrib>Heimann, Philip</creatorcontrib><creatorcontrib>Khaghani, Dimitri</creatorcontrib><creatorcontrib>Lee, Hae Ja</creatorcontrib><creatorcontrib>Spaulding, D. K.</creatorcontrib><creatorcontrib>Polsin, Danae N.</creatorcontrib><creatorcontrib>Gleason, Arianna E.</creatorcontrib><creatorcontrib>Kukreja, Roopali</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madhavi, Meera</au><au>Jangid, Rahul</au><au>Christiansen-Salameh, Joyce</au><au>Cheng, Yu-Hsing</au><au>Rao, Pooja</au><au>Li, Jianheng</au><au>Teja Botu, Surya</au><au>Jeppson, Spencer</au><au>Mehta, Jugal</au><au>Smith, Scott</au><au>Isobe, Jared T.</au><au>Hok, Sovanndara</au><au>Saha, Rahul</au><au>Cunningham, Eric</au><au>Heimann, Philip</au><au>Khaghani, Dimitri</au><au>Lee, Hae Ja</au><au>Spaulding, D. K.</au><au>Polsin, Danae N.</au><au>Gleason, Arianna E.</au><au>Kukreja, Roopali</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior of soda-lime silicate glass under laser-driven shock compression up to 315 GPa</atitle><jtitle>Journal of applied physics</jtitle><date>2023-05-07</date><risdate>2023</risdate><volume>133</volume><issue>17</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Shock experiments give a unique insight into the behavior of matter subjected to extremely high pressures and temperatures. Understanding the behavior of materials under such extreme conditions is key to modeling material failure and deformation dynamics under impact. While studies on pure silica are extensive, the shock behavior of other commercial silicates that contain additional oxides has not been systematically investigated. To better understand the role of composition in the dynamic behavior of silicates, we performed laser-driven dynamic compression experiments on soda-lime glass (SLG) up to 315 GPa. Using the accurate pulse shaping offered by the long pulse laser system at the Matter in Extreme Conditions end-station at the Linac Coherent Light Source, SLG was shock compressed along the Hugoniot to multiple pressure-temperature points. Velocity Interferometer System for Any Reflector was used to measure the velocity and determine the pressure inside the SLG. The U
s–u
p relationship obtained agrees well with the previous parallel plate impact studies. Within the error bars, no transformation to the crystalline phase was observed up to 70 GPa, which is in contrast to the behavior of pure silica under shock compression. Our studies show that the glass composition strongly influences the shock compression behavior of the silicate glasses.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0132114</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1493-9612</orcidid><orcidid>https://orcid.org/0000-0002-4053-3237</orcidid><orcidid>https://orcid.org/0000-0002-9511-3221</orcidid><orcidid>https://orcid.org/0000-0001-5286-954X</orcidid><orcidid>https://orcid.org/0000-0001-9529-5056</orcidid><orcidid>https://orcid.org/0000-0002-7292-7302</orcidid><orcidid>https://orcid.org/0000-0002-3468-5082</orcidid><orcidid>https://orcid.org/0000-0002-0976-4416</orcidid><orcidid>https://orcid.org/0000-0002-9726-9166</orcidid><orcidid>https://orcid.org/0000-0001-7841-5335</orcidid><orcidid>https://orcid.org/0000-0003-3536-822X</orcidid><orcidid>https://orcid.org/0000-0002-6399-6525</orcidid><orcidid>https://orcid.org/0000-0002-9162-8527</orcidid><orcidid>https://orcid.org/0000-0001-8212-7846</orcidid><orcidid>https://orcid.org/0000-0003-0446-5959</orcidid><orcidid>https://orcid.org/0000-0002-2973-664X</orcidid><orcidid>https://orcid.org/0000-0002-5139-2310</orcidid><orcidid>https://orcid.org/0000000214939612</orcidid><orcidid>https://orcid.org/0000000182127846</orcidid><orcidid>https://orcid.org/0000000209764416</orcidid><orcidid>https://orcid.org/0000000263996525</orcidid><orcidid>https://orcid.org/0000000272927302</orcidid><orcidid>https://orcid.org/0000000251392310</orcidid><orcidid>https://orcid.org/0000000295113221</orcidid><orcidid>https://orcid.org/0000000304465959</orcidid><orcidid>https://orcid.org/0000000240533237</orcidid><orcidid>https://orcid.org/000000033536822X</orcidid><orcidid>https://orcid.org/000000022973664X</orcidid><orcidid>https://orcid.org/0000000234685082</orcidid><orcidid>https://orcid.org/0000000291628527</orcidid><orcidid>https://orcid.org/0000000297269166</orcidid><orcidid>https://orcid.org/0000000178415335</orcidid><orcidid>https://orcid.org/000000015286954X</orcidid><orcidid>https://orcid.org/0000000195295056</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-05, Vol.133 (17) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2808058605 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Coherent light Composition Dielectric materials Error analysis Glass Interferometry Lasers Light sources Materials failure MATERIALS SCIENCE Parallel plates Phase transitions Shock compression Shock waves Silica Silicates Silicon dioxide Soda-lime glass |
title | Behavior of soda-lime silicate glass under laser-driven shock compression up to 315 GPa |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20of%20soda-lime%20silicate%20glass%20under%20laser-driven%20shock%20compression%20up%20to%20315%E2%80%89GPa&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Madhavi,%20Meera&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States).%20Linac%20Coherent%20Light%20Source%20(LCLS)&rft.date=2023-05-07&rft.volume=133&rft.issue=17&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0132114&rft_dat=%3Cproquest_scita%3E2808058605%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-b7a91960078ab630ea6ec339dc48a02c057e14bbd14222c73d6ad71b9336522f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2808058605&rft_id=info:pmid/&rfr_iscdi=true |