Loading…

Behavior of soda-lime silicate glass under laser-driven shock compression up to 315 GPa

Shock experiments give a unique insight into the behavior of matter subjected to extremely high pressures and temperatures. Understanding the behavior of materials under such extreme conditions is key to modeling material failure and deformation dynamics under impact. While studies on pure silica ar...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2023-05, Vol.133 (17)
Main Authors: Madhavi, Meera, Jangid, Rahul, Christiansen-Salameh, Joyce, Cheng, Yu-Hsing, Rao, Pooja, Li, Jianheng, Teja Botu, Surya, Jeppson, Spencer, Mehta, Jugal, Smith, Scott, Isobe, Jared T., Hok, Sovanndara, Saha, Rahul, Cunningham, Eric, Heimann, Philip, Khaghani, Dimitri, Lee, Hae Ja, Spaulding, D. K., Polsin, Danae N., Gleason, Arianna E., Kukreja, Roopali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c349t-b7a91960078ab630ea6ec339dc48a02c057e14bbd14222c73d6ad71b9336522f3
container_end_page
container_issue 17
container_start_page
container_title Journal of applied physics
container_volume 133
creator Madhavi, Meera
Jangid, Rahul
Christiansen-Salameh, Joyce
Cheng, Yu-Hsing
Rao, Pooja
Li, Jianheng
Teja Botu, Surya
Jeppson, Spencer
Mehta, Jugal
Smith, Scott
Isobe, Jared T.
Hok, Sovanndara
Saha, Rahul
Cunningham, Eric
Heimann, Philip
Khaghani, Dimitri
Lee, Hae Ja
Spaulding, D. K.
Polsin, Danae N.
Gleason, Arianna E.
Kukreja, Roopali
description Shock experiments give a unique insight into the behavior of matter subjected to extremely high pressures and temperatures. Understanding the behavior of materials under such extreme conditions is key to modeling material failure and deformation dynamics under impact. While studies on pure silica are extensive, the shock behavior of other commercial silicates that contain additional oxides has not been systematically investigated. To better understand the role of composition in the dynamic behavior of silicates, we performed laser-driven dynamic compression experiments on soda-lime glass (SLG) up to 315 GPa. Using the accurate pulse shaping offered by the long pulse laser system at the Matter in Extreme Conditions end-station at the Linac Coherent Light Source, SLG was shock compressed along the Hugoniot to multiple pressure-temperature points. Velocity Interferometer System for Any Reflector was used to measure the velocity and determine the pressure inside the SLG. The U s–u p relationship obtained agrees well with the previous parallel plate impact studies. Within the error bars, no transformation to the crystalline phase was observed up to 70 GPa, which is in contrast to the behavior of pure silica under shock compression. Our studies show that the glass composition strongly influences the shock compression behavior of the silicate glasses.
doi_str_mv 10.1063/5.0132114
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2808058605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808058605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b7a91960078ab630ea6ec339dc48a02c057e14bbd14222c73d6ad71b9336522f3</originalsourceid><addsrcrecordid>eNp90LFOwzAQBmALgUQpDLyBBRNIKWc7TuwRKihIlWCAgclyHIe6tHGwk0psrLwmT0KqVjAgMd0Nn_47_QgdExgRyNgFHwFhlJB0Bw0ICJnknMMuGgBQkgiZy310EOMcgBDB5AA9X9mZXjkfsK9w9KVOFm5pcXQLZ3Rr8ctCx4i7urQB96sNSRncytY4zrx5xcYvm2BjdL7GXYNbjxnhXx-fkwd9iPYqvYj2aDuH6Onm-nF8m0zvJ3fjy2liWCrbpMi1JDIDyIUuMgZWZ9YwJkuTCg3UAM8tSYuiJCml1OSszHSZk0IylnFKKzZEJ5tcH1unonGtNTPj69qaVhEpZJZDj043qAn-rbOxVXPfhbr_S1EBArjIgPfqbKNM8DEGW6kmuKUO74qAWteruNrW29vzjV1f1G1fwA9e-fALVVNW_-G_yd8ijodY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808058605</pqid></control><display><type>article</type><title>Behavior of soda-lime silicate glass under laser-driven shock compression up to 315 GPa</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Madhavi, Meera ; Jangid, Rahul ; Christiansen-Salameh, Joyce ; Cheng, Yu-Hsing ; Rao, Pooja ; Li, Jianheng ; Teja Botu, Surya ; Jeppson, Spencer ; Mehta, Jugal ; Smith, Scott ; Isobe, Jared T. ; Hok, Sovanndara ; Saha, Rahul ; Cunningham, Eric ; Heimann, Philip ; Khaghani, Dimitri ; Lee, Hae Ja ; Spaulding, D. K. ; Polsin, Danae N. ; Gleason, Arianna E. ; Kukreja, Roopali</creator><creatorcontrib>Madhavi, Meera ; Jangid, Rahul ; Christiansen-Salameh, Joyce ; Cheng, Yu-Hsing ; Rao, Pooja ; Li, Jianheng ; Teja Botu, Surya ; Jeppson, Spencer ; Mehta, Jugal ; Smith, Scott ; Isobe, Jared T. ; Hok, Sovanndara ; Saha, Rahul ; Cunningham, Eric ; Heimann, Philip ; Khaghani, Dimitri ; Lee, Hae Ja ; Spaulding, D. K. ; Polsin, Danae N. ; Gleason, Arianna E. ; Kukreja, Roopali ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</creatorcontrib><description>Shock experiments give a unique insight into the behavior of matter subjected to extremely high pressures and temperatures. Understanding the behavior of materials under such extreme conditions is key to modeling material failure and deformation dynamics under impact. While studies on pure silica are extensive, the shock behavior of other commercial silicates that contain additional oxides has not been systematically investigated. To better understand the role of composition in the dynamic behavior of silicates, we performed laser-driven dynamic compression experiments on soda-lime glass (SLG) up to 315 GPa. Using the accurate pulse shaping offered by the long pulse laser system at the Matter in Extreme Conditions end-station at the Linac Coherent Light Source, SLG was shock compressed along the Hugoniot to multiple pressure-temperature points. Velocity Interferometer System for Any Reflector was used to measure the velocity and determine the pressure inside the SLG. The U s–u p relationship obtained agrees well with the previous parallel plate impact studies. Within the error bars, no transformation to the crystalline phase was observed up to 70 GPa, which is in contrast to the behavior of pure silica under shock compression. Our studies show that the glass composition strongly influences the shock compression behavior of the silicate glasses.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0132114</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Coherent light ; Composition ; Dielectric materials ; Error analysis ; Glass ; Interferometry ; Lasers ; Light sources ; Materials failure ; MATERIALS SCIENCE ; Parallel plates ; Phase transitions ; Shock compression ; Shock waves ; Silica ; Silicates ; Silicon dioxide ; Soda-lime glass</subject><ispartof>Journal of applied physics, 2023-05, Vol.133 (17)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-b7a91960078ab630ea6ec339dc48a02c057e14bbd14222c73d6ad71b9336522f3</cites><orcidid>0000-0002-1493-9612 ; 0000-0002-4053-3237 ; 0000-0002-9511-3221 ; 0000-0001-5286-954X ; 0000-0001-9529-5056 ; 0000-0002-7292-7302 ; 0000-0002-3468-5082 ; 0000-0002-0976-4416 ; 0000-0002-9726-9166 ; 0000-0001-7841-5335 ; 0000-0003-3536-822X ; 0000-0002-6399-6525 ; 0000-0002-9162-8527 ; 0000-0001-8212-7846 ; 0000-0003-0446-5959 ; 0000-0002-2973-664X ; 0000-0002-5139-2310 ; 0000000214939612 ; 0000000182127846 ; 0000000209764416 ; 0000000263996525 ; 0000000272927302 ; 0000000251392310 ; 0000000295113221 ; 0000000304465959 ; 0000000240533237 ; 000000033536822X ; 000000022973664X ; 0000000234685082 ; 0000000291628527 ; 0000000297269166 ; 0000000178415335 ; 000000015286954X ; 0000000195295056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1989670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Madhavi, Meera</creatorcontrib><creatorcontrib>Jangid, Rahul</creatorcontrib><creatorcontrib>Christiansen-Salameh, Joyce</creatorcontrib><creatorcontrib>Cheng, Yu-Hsing</creatorcontrib><creatorcontrib>Rao, Pooja</creatorcontrib><creatorcontrib>Li, Jianheng</creatorcontrib><creatorcontrib>Teja Botu, Surya</creatorcontrib><creatorcontrib>Jeppson, Spencer</creatorcontrib><creatorcontrib>Mehta, Jugal</creatorcontrib><creatorcontrib>Smith, Scott</creatorcontrib><creatorcontrib>Isobe, Jared T.</creatorcontrib><creatorcontrib>Hok, Sovanndara</creatorcontrib><creatorcontrib>Saha, Rahul</creatorcontrib><creatorcontrib>Cunningham, Eric</creatorcontrib><creatorcontrib>Heimann, Philip</creatorcontrib><creatorcontrib>Khaghani, Dimitri</creatorcontrib><creatorcontrib>Lee, Hae Ja</creatorcontrib><creatorcontrib>Spaulding, D. K.</creatorcontrib><creatorcontrib>Polsin, Danae N.</creatorcontrib><creatorcontrib>Gleason, Arianna E.</creatorcontrib><creatorcontrib>Kukreja, Roopali</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</creatorcontrib><title>Behavior of soda-lime silicate glass under laser-driven shock compression up to 315 GPa</title><title>Journal of applied physics</title><description>Shock experiments give a unique insight into the behavior of matter subjected to extremely high pressures and temperatures. Understanding the behavior of materials under such extreme conditions is key to modeling material failure and deformation dynamics under impact. While studies on pure silica are extensive, the shock behavior of other commercial silicates that contain additional oxides has not been systematically investigated. To better understand the role of composition in the dynamic behavior of silicates, we performed laser-driven dynamic compression experiments on soda-lime glass (SLG) up to 315 GPa. Using the accurate pulse shaping offered by the long pulse laser system at the Matter in Extreme Conditions end-station at the Linac Coherent Light Source, SLG was shock compressed along the Hugoniot to multiple pressure-temperature points. Velocity Interferometer System for Any Reflector was used to measure the velocity and determine the pressure inside the SLG. The U s–u p relationship obtained agrees well with the previous parallel plate impact studies. Within the error bars, no transformation to the crystalline phase was observed up to 70 GPa, which is in contrast to the behavior of pure silica under shock compression. Our studies show that the glass composition strongly influences the shock compression behavior of the silicate glasses.</description><subject>Applied physics</subject><subject>Coherent light</subject><subject>Composition</subject><subject>Dielectric materials</subject><subject>Error analysis</subject><subject>Glass</subject><subject>Interferometry</subject><subject>Lasers</subject><subject>Light sources</subject><subject>Materials failure</subject><subject>MATERIALS SCIENCE</subject><subject>Parallel plates</subject><subject>Phase transitions</subject><subject>Shock compression</subject><subject>Shock waves</subject><subject>Silica</subject><subject>Silicates</subject><subject>Silicon dioxide</subject><subject>Soda-lime glass</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90LFOwzAQBmALgUQpDLyBBRNIKWc7TuwRKihIlWCAgclyHIe6tHGwk0psrLwmT0KqVjAgMd0Nn_47_QgdExgRyNgFHwFhlJB0Bw0ICJnknMMuGgBQkgiZy310EOMcgBDB5AA9X9mZXjkfsK9w9KVOFm5pcXQLZ3Rr8ctCx4i7urQB96sNSRncytY4zrx5xcYvm2BjdL7GXYNbjxnhXx-fkwd9iPYqvYj2aDuH6Onm-nF8m0zvJ3fjy2liWCrbpMi1JDIDyIUuMgZWZ9YwJkuTCg3UAM8tSYuiJCml1OSszHSZk0IylnFKKzZEJ5tcH1unonGtNTPj69qaVhEpZJZDj043qAn-rbOxVXPfhbr_S1EBArjIgPfqbKNM8DEGW6kmuKUO74qAWteruNrW29vzjV1f1G1fwA9e-fALVVNW_-G_yd8ijodY</recordid><startdate>20230507</startdate><enddate>20230507</enddate><creator>Madhavi, Meera</creator><creator>Jangid, Rahul</creator><creator>Christiansen-Salameh, Joyce</creator><creator>Cheng, Yu-Hsing</creator><creator>Rao, Pooja</creator><creator>Li, Jianheng</creator><creator>Teja Botu, Surya</creator><creator>Jeppson, Spencer</creator><creator>Mehta, Jugal</creator><creator>Smith, Scott</creator><creator>Isobe, Jared T.</creator><creator>Hok, Sovanndara</creator><creator>Saha, Rahul</creator><creator>Cunningham, Eric</creator><creator>Heimann, Philip</creator><creator>Khaghani, Dimitri</creator><creator>Lee, Hae Ja</creator><creator>Spaulding, D. K.</creator><creator>Polsin, Danae N.</creator><creator>Gleason, Arianna E.</creator><creator>Kukreja, Roopali</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1493-9612</orcidid><orcidid>https://orcid.org/0000-0002-4053-3237</orcidid><orcidid>https://orcid.org/0000-0002-9511-3221</orcidid><orcidid>https://orcid.org/0000-0001-5286-954X</orcidid><orcidid>https://orcid.org/0000-0001-9529-5056</orcidid><orcidid>https://orcid.org/0000-0002-7292-7302</orcidid><orcidid>https://orcid.org/0000-0002-3468-5082</orcidid><orcidid>https://orcid.org/0000-0002-0976-4416</orcidid><orcidid>https://orcid.org/0000-0002-9726-9166</orcidid><orcidid>https://orcid.org/0000-0001-7841-5335</orcidid><orcidid>https://orcid.org/0000-0003-3536-822X</orcidid><orcidid>https://orcid.org/0000-0002-6399-6525</orcidid><orcidid>https://orcid.org/0000-0002-9162-8527</orcidid><orcidid>https://orcid.org/0000-0001-8212-7846</orcidid><orcidid>https://orcid.org/0000-0003-0446-5959</orcidid><orcidid>https://orcid.org/0000-0002-2973-664X</orcidid><orcidid>https://orcid.org/0000-0002-5139-2310</orcidid><orcidid>https://orcid.org/0000000214939612</orcidid><orcidid>https://orcid.org/0000000182127846</orcidid><orcidid>https://orcid.org/0000000209764416</orcidid><orcidid>https://orcid.org/0000000263996525</orcidid><orcidid>https://orcid.org/0000000272927302</orcidid><orcidid>https://orcid.org/0000000251392310</orcidid><orcidid>https://orcid.org/0000000295113221</orcidid><orcidid>https://orcid.org/0000000304465959</orcidid><orcidid>https://orcid.org/0000000240533237</orcidid><orcidid>https://orcid.org/000000033536822X</orcidid><orcidid>https://orcid.org/000000022973664X</orcidid><orcidid>https://orcid.org/0000000234685082</orcidid><orcidid>https://orcid.org/0000000291628527</orcidid><orcidid>https://orcid.org/0000000297269166</orcidid><orcidid>https://orcid.org/0000000178415335</orcidid><orcidid>https://orcid.org/000000015286954X</orcidid><orcidid>https://orcid.org/0000000195295056</orcidid></search><sort><creationdate>20230507</creationdate><title>Behavior of soda-lime silicate glass under laser-driven shock compression up to 315 GPa</title><author>Madhavi, Meera ; Jangid, Rahul ; Christiansen-Salameh, Joyce ; Cheng, Yu-Hsing ; Rao, Pooja ; Li, Jianheng ; Teja Botu, Surya ; Jeppson, Spencer ; Mehta, Jugal ; Smith, Scott ; Isobe, Jared T. ; Hok, Sovanndara ; Saha, Rahul ; Cunningham, Eric ; Heimann, Philip ; Khaghani, Dimitri ; Lee, Hae Ja ; Spaulding, D. K. ; Polsin, Danae N. ; Gleason, Arianna E. ; Kukreja, Roopali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b7a91960078ab630ea6ec339dc48a02c057e14bbd14222c73d6ad71b9336522f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Coherent light</topic><topic>Composition</topic><topic>Dielectric materials</topic><topic>Error analysis</topic><topic>Glass</topic><topic>Interferometry</topic><topic>Lasers</topic><topic>Light sources</topic><topic>Materials failure</topic><topic>MATERIALS SCIENCE</topic><topic>Parallel plates</topic><topic>Phase transitions</topic><topic>Shock compression</topic><topic>Shock waves</topic><topic>Silica</topic><topic>Silicates</topic><topic>Silicon dioxide</topic><topic>Soda-lime glass</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madhavi, Meera</creatorcontrib><creatorcontrib>Jangid, Rahul</creatorcontrib><creatorcontrib>Christiansen-Salameh, Joyce</creatorcontrib><creatorcontrib>Cheng, Yu-Hsing</creatorcontrib><creatorcontrib>Rao, Pooja</creatorcontrib><creatorcontrib>Li, Jianheng</creatorcontrib><creatorcontrib>Teja Botu, Surya</creatorcontrib><creatorcontrib>Jeppson, Spencer</creatorcontrib><creatorcontrib>Mehta, Jugal</creatorcontrib><creatorcontrib>Smith, Scott</creatorcontrib><creatorcontrib>Isobe, Jared T.</creatorcontrib><creatorcontrib>Hok, Sovanndara</creatorcontrib><creatorcontrib>Saha, Rahul</creatorcontrib><creatorcontrib>Cunningham, Eric</creatorcontrib><creatorcontrib>Heimann, Philip</creatorcontrib><creatorcontrib>Khaghani, Dimitri</creatorcontrib><creatorcontrib>Lee, Hae Ja</creatorcontrib><creatorcontrib>Spaulding, D. K.</creatorcontrib><creatorcontrib>Polsin, Danae N.</creatorcontrib><creatorcontrib>Gleason, Arianna E.</creatorcontrib><creatorcontrib>Kukreja, Roopali</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madhavi, Meera</au><au>Jangid, Rahul</au><au>Christiansen-Salameh, Joyce</au><au>Cheng, Yu-Hsing</au><au>Rao, Pooja</au><au>Li, Jianheng</au><au>Teja Botu, Surya</au><au>Jeppson, Spencer</au><au>Mehta, Jugal</au><au>Smith, Scott</au><au>Isobe, Jared T.</au><au>Hok, Sovanndara</au><au>Saha, Rahul</au><au>Cunningham, Eric</au><au>Heimann, Philip</au><au>Khaghani, Dimitri</au><au>Lee, Hae Ja</au><au>Spaulding, D. K.</au><au>Polsin, Danae N.</au><au>Gleason, Arianna E.</au><au>Kukreja, Roopali</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior of soda-lime silicate glass under laser-driven shock compression up to 315 GPa</atitle><jtitle>Journal of applied physics</jtitle><date>2023-05-07</date><risdate>2023</risdate><volume>133</volume><issue>17</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Shock experiments give a unique insight into the behavior of matter subjected to extremely high pressures and temperatures. Understanding the behavior of materials under such extreme conditions is key to modeling material failure and deformation dynamics under impact. While studies on pure silica are extensive, the shock behavior of other commercial silicates that contain additional oxides has not been systematically investigated. To better understand the role of composition in the dynamic behavior of silicates, we performed laser-driven dynamic compression experiments on soda-lime glass (SLG) up to 315 GPa. Using the accurate pulse shaping offered by the long pulse laser system at the Matter in Extreme Conditions end-station at the Linac Coherent Light Source, SLG was shock compressed along the Hugoniot to multiple pressure-temperature points. Velocity Interferometer System for Any Reflector was used to measure the velocity and determine the pressure inside the SLG. The U s–u p relationship obtained agrees well with the previous parallel plate impact studies. Within the error bars, no transformation to the crystalline phase was observed up to 70 GPa, which is in contrast to the behavior of pure silica under shock compression. Our studies show that the glass composition strongly influences the shock compression behavior of the silicate glasses.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0132114</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1493-9612</orcidid><orcidid>https://orcid.org/0000-0002-4053-3237</orcidid><orcidid>https://orcid.org/0000-0002-9511-3221</orcidid><orcidid>https://orcid.org/0000-0001-5286-954X</orcidid><orcidid>https://orcid.org/0000-0001-9529-5056</orcidid><orcidid>https://orcid.org/0000-0002-7292-7302</orcidid><orcidid>https://orcid.org/0000-0002-3468-5082</orcidid><orcidid>https://orcid.org/0000-0002-0976-4416</orcidid><orcidid>https://orcid.org/0000-0002-9726-9166</orcidid><orcidid>https://orcid.org/0000-0001-7841-5335</orcidid><orcidid>https://orcid.org/0000-0003-3536-822X</orcidid><orcidid>https://orcid.org/0000-0002-6399-6525</orcidid><orcidid>https://orcid.org/0000-0002-9162-8527</orcidid><orcidid>https://orcid.org/0000-0001-8212-7846</orcidid><orcidid>https://orcid.org/0000-0003-0446-5959</orcidid><orcidid>https://orcid.org/0000-0002-2973-664X</orcidid><orcidid>https://orcid.org/0000-0002-5139-2310</orcidid><orcidid>https://orcid.org/0000000214939612</orcidid><orcidid>https://orcid.org/0000000182127846</orcidid><orcidid>https://orcid.org/0000000209764416</orcidid><orcidid>https://orcid.org/0000000263996525</orcidid><orcidid>https://orcid.org/0000000272927302</orcidid><orcidid>https://orcid.org/0000000251392310</orcidid><orcidid>https://orcid.org/0000000295113221</orcidid><orcidid>https://orcid.org/0000000304465959</orcidid><orcidid>https://orcid.org/0000000240533237</orcidid><orcidid>https://orcid.org/000000033536822X</orcidid><orcidid>https://orcid.org/000000022973664X</orcidid><orcidid>https://orcid.org/0000000234685082</orcidid><orcidid>https://orcid.org/0000000291628527</orcidid><orcidid>https://orcid.org/0000000297269166</orcidid><orcidid>https://orcid.org/0000000178415335</orcidid><orcidid>https://orcid.org/000000015286954X</orcidid><orcidid>https://orcid.org/0000000195295056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-05, Vol.133 (17)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2808058605
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Coherent light
Composition
Dielectric materials
Error analysis
Glass
Interferometry
Lasers
Light sources
Materials failure
MATERIALS SCIENCE
Parallel plates
Phase transitions
Shock compression
Shock waves
Silica
Silicates
Silicon dioxide
Soda-lime glass
title Behavior of soda-lime silicate glass under laser-driven shock compression up to 315 GPa
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20of%20soda-lime%20silicate%20glass%20under%20laser-driven%20shock%20compression%20up%20to%20315%E2%80%89GPa&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Madhavi,%20Meera&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States).%20Linac%20Coherent%20Light%20Source%20(LCLS)&rft.date=2023-05-07&rft.volume=133&rft.issue=17&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0132114&rft_dat=%3Cproquest_scita%3E2808058605%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-b7a91960078ab630ea6ec339dc48a02c057e14bbd14222c73d6ad71b9336522f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2808058605&rft_id=info:pmid/&rfr_iscdi=true