Loading…
FedAVO: Improving Communication Efficiency in Federated Learning with African Vultures Optimizer
Federated Learning (FL), a distributed machine learning technique has recently experienced tremendous growth in popularity due to its emphasis on user data privacy. However, the distributed computations of FL can result in constrained communication and drawn-out learning processes, necessitating the...
Saved in:
Published in: | arXiv.org 2023-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Federated Learning (FL), a distributed machine learning technique has recently experienced tremendous growth in popularity due to its emphasis on user data privacy. However, the distributed computations of FL can result in constrained communication and drawn-out learning processes, necessitating the client-server communication cost optimization. The ratio of chosen clients and the quantity of local training passes are two hyperparameters that have a significant impact on FL performance. Due to different training preferences across various applications, it can be difficult for FL practitioners to manually select such hyperparameters. In our research paper, we introduce FedAVO, a novel FL algorithm that enhances communication effectiveness by selecting the best hyperparameters leveraging the African Vulture Optimizer (AVO). Our research demonstrates that the communication costs associated with FL operations can be substantially reduced by adopting AVO for FL hyperparameter adjustment. Through extensive evaluations of FedAVO on benchmark datasets, we show that FedAVO achieves significant improvement in terms of model accuracy and communication round, particularly with realistic cases of Non-IID datasets. Our extensive evaluation of the FedAVO algorithm identifies the optimal hyperparameters that are appropriately fitted for the benchmark datasets, eventually increasing global model accuracy by 6% in comparison to the state-of-the-art FL algorithms (such as FedAvg, FedProx, FedPSO, etc.). |
---|---|
ISSN: | 2331-8422 |