Loading…
Robust Kalman Filter Enhanced by Projection Statistic Detector for Multisensor Navigation in Urban Canyon Environment
Multisensor navigation via redundancy and complementary has been widely applied to safety-critical services, such as self-driving vehicles. To improve the robustness and reliability of the multisensor navigation system in urban canyon environments, a robust Kalman filter (RKF) method enhanced by the...
Saved in:
Published in: | IEEE sensors journal 2023-05, Vol.23 (9), p.9832-9847 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-12a36f6c8941d15425dd800a2c2a066f7b992f5e4cd4493a29c654c00f8544aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-12a36f6c8941d15425dd800a2c2a066f7b992f5e4cd4493a29c654c00f8544aa3 |
container_end_page | 9847 |
container_issue | 9 |
container_start_page | 9832 |
container_title | IEEE sensors journal |
container_volume | 23 |
creator | Jiang, Yingying Pan, Shuguo Meng, Qian Gao, Wang Ma, Chun Yu, Baoguo Jia, Fengshuo |
description | Multisensor navigation via redundancy and complementary has been widely applied to safety-critical services, such as self-driving vehicles. To improve the robustness and reliability of the multisensor navigation system in urban canyon environments, a robust Kalman filter (RKF) method enhanced by the projection statistic (PS) detector is proposed in this work. Based on a statistical consistency check, the availability of measurements from observation sensors is preevaluated by the PS criterion. The new iterative Huber's M-estimation with the exclusion function is implemented on the linear regression model for robust state estimation. The effectiveness of the proposed algorithm was verified by a dynamic test in the representative urban canyon environment. Our approach shows significant superiority and robustness among the comparative experiments, where the 3-D root-mean-square (rms) error is limited to 3.33 m. The biased measurements can be effectively identified and removed by the PS detector with a given significance level. The new iterative Huber's M-estimation assisted by the prior availability knowledge enables the integration solution more robust and reliable. The presented robust method is pretty suitable for multisensor navigation in urban canyon environments. |
doi_str_mv | 10.1109/JSEN.2022.3230708 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2808830451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9998544</ieee_id><sourcerecordid>2808830451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-12a36f6c8941d15425dd800a2c2a066f7b992f5e4cd4493a29c654c00f8544aa3</originalsourceid><addsrcrecordid>eNo9UFtLwzAULqLgnP4A8SXgc2eubfIoc_M2pzgHvpU0TTWjS2eSDvbvTd3w4XDO-fgu8CXJJYIjhKC4eVpM5iMMMR4RTGAO-VEyQIzxFOWUH_c3gSkl-edpcub9CkIkcpYPku69LTsfwLNs1tKCqWmCdmBiv6VVugLlDry5dqVVMK0FiyCD8cEocKdDxFoH6jgvXRNhbX2853JrvuQf21iwdGU0HUu7i__Ebo1r7VrbcJ6c1LLx-uKwh8lyOvkYP6Sz1_vH8e0sVViQkCIsSVZniguKKsQoZlXFIZRYYQmzrM5LIXDNNFUVpYJILFTGqIKw5oxSKckwud77blz702kfilXbORsjC8wh5wRShiIL7VnKtd47XRcbZ9bS7QoEi77dom-36NstDu1GzdVeY7TW_3whRJ9MfgFWOncH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808830451</pqid></control><display><type>article</type><title>Robust Kalman Filter Enhanced by Projection Statistic Detector for Multisensor Navigation in Urban Canyon Environment</title><source>IEEE Xplore (Online service)</source><creator>Jiang, Yingying ; Pan, Shuguo ; Meng, Qian ; Gao, Wang ; Ma, Chun ; Yu, Baoguo ; Jia, Fengshuo</creator><creatorcontrib>Jiang, Yingying ; Pan, Shuguo ; Meng, Qian ; Gao, Wang ; Ma, Chun ; Yu, Baoguo ; Jia, Fengshuo</creatorcontrib><description>Multisensor navigation via redundancy and complementary has been widely applied to safety-critical services, such as self-driving vehicles. To improve the robustness and reliability of the multisensor navigation system in urban canyon environments, a robust Kalman filter (RKF) method enhanced by the projection statistic (PS) detector is proposed in this work. Based on a statistical consistency check, the availability of measurements from observation sensors is preevaluated by the PS criterion. The new iterative Huber's M-estimation with the exclusion function is implemented on the linear regression model for robust state estimation. The effectiveness of the proposed algorithm was verified by a dynamic test in the representative urban canyon environment. Our approach shows significant superiority and robustness among the comparative experiments, where the 3-D root-mean-square (rms) error is limited to 3.33 m. The biased measurements can be effectively identified and removed by the PS detector with a given significance level. The new iterative Huber's M-estimation assisted by the prior availability knowledge enables the integration solution more robust and reliable. The presented robust method is pretty suitable for multisensor navigation in urban canyon environments.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3230708</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autonomous cars ; Availability ; Dynamic tests ; Extended Kalman filter (EKF) ; Global navigation satellite system ; huber’s M-estimation ; Iterative methods ; Kalman filters ; loosely couple ; multisensor integration ; Navigation systems ; Particle measurements ; Pollution measurement ; projection statistics (PSs) ; Redundancy ; Regression models ; Robustness ; Robustness (mathematics) ; Safety critical ; Sensors ; State estimation ; Statistical analysis ; Street canyons ; urban canyon ; Urban environments</subject><ispartof>IEEE sensors journal, 2023-05, Vol.23 (9), p.9832-9847</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-12a36f6c8941d15425dd800a2c2a066f7b992f5e4cd4493a29c654c00f8544aa3</citedby><cites>FETCH-LOGICAL-c293t-12a36f6c8941d15425dd800a2c2a066f7b992f5e4cd4493a29c654c00f8544aa3</cites><orcidid>0000-0003-0724-9020 ; 0000-0003-3122-208X ; 0000-0002-2149-1086 ; 0000-0002-3006-7519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9998544$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jiang, Yingying</creatorcontrib><creatorcontrib>Pan, Shuguo</creatorcontrib><creatorcontrib>Meng, Qian</creatorcontrib><creatorcontrib>Gao, Wang</creatorcontrib><creatorcontrib>Ma, Chun</creatorcontrib><creatorcontrib>Yu, Baoguo</creatorcontrib><creatorcontrib>Jia, Fengshuo</creatorcontrib><title>Robust Kalman Filter Enhanced by Projection Statistic Detector for Multisensor Navigation in Urban Canyon Environment</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Multisensor navigation via redundancy and complementary has been widely applied to safety-critical services, such as self-driving vehicles. To improve the robustness and reliability of the multisensor navigation system in urban canyon environments, a robust Kalman filter (RKF) method enhanced by the projection statistic (PS) detector is proposed in this work. Based on a statistical consistency check, the availability of measurements from observation sensors is preevaluated by the PS criterion. The new iterative Huber's M-estimation with the exclusion function is implemented on the linear regression model for robust state estimation. The effectiveness of the proposed algorithm was verified by a dynamic test in the representative urban canyon environment. Our approach shows significant superiority and robustness among the comparative experiments, where the 3-D root-mean-square (rms) error is limited to 3.33 m. The biased measurements can be effectively identified and removed by the PS detector with a given significance level. The new iterative Huber's M-estimation assisted by the prior availability knowledge enables the integration solution more robust and reliable. The presented robust method is pretty suitable for multisensor navigation in urban canyon environments.</description><subject>Algorithms</subject><subject>Autonomous cars</subject><subject>Availability</subject><subject>Dynamic tests</subject><subject>Extended Kalman filter (EKF)</subject><subject>Global navigation satellite system</subject><subject>huber’s M-estimation</subject><subject>Iterative methods</subject><subject>Kalman filters</subject><subject>loosely couple</subject><subject>multisensor integration</subject><subject>Navigation systems</subject><subject>Particle measurements</subject><subject>Pollution measurement</subject><subject>projection statistics (PSs)</subject><subject>Redundancy</subject><subject>Regression models</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Safety critical</subject><subject>Sensors</subject><subject>State estimation</subject><subject>Statistical analysis</subject><subject>Street canyons</subject><subject>urban canyon</subject><subject>Urban environments</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UFtLwzAULqLgnP4A8SXgc2eubfIoc_M2pzgHvpU0TTWjS2eSDvbvTd3w4XDO-fgu8CXJJYIjhKC4eVpM5iMMMR4RTGAO-VEyQIzxFOWUH_c3gSkl-edpcub9CkIkcpYPku69LTsfwLNs1tKCqWmCdmBiv6VVugLlDry5dqVVMK0FiyCD8cEocKdDxFoH6jgvXRNhbX2853JrvuQf21iwdGU0HUu7i__Ebo1r7VrbcJ6c1LLx-uKwh8lyOvkYP6Sz1_vH8e0sVViQkCIsSVZniguKKsQoZlXFIZRYYQmzrM5LIXDNNFUVpYJILFTGqIKw5oxSKckwud77blz702kfilXbORsjC8wh5wRShiIL7VnKtd47XRcbZ9bS7QoEi77dom-36NstDu1GzdVeY7TW_3whRJ9MfgFWOncH</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Jiang, Yingying</creator><creator>Pan, Shuguo</creator><creator>Meng, Qian</creator><creator>Gao, Wang</creator><creator>Ma, Chun</creator><creator>Yu, Baoguo</creator><creator>Jia, Fengshuo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0724-9020</orcidid><orcidid>https://orcid.org/0000-0003-3122-208X</orcidid><orcidid>https://orcid.org/0000-0002-2149-1086</orcidid><orcidid>https://orcid.org/0000-0002-3006-7519</orcidid></search><sort><creationdate>20230501</creationdate><title>Robust Kalman Filter Enhanced by Projection Statistic Detector for Multisensor Navigation in Urban Canyon Environment</title><author>Jiang, Yingying ; Pan, Shuguo ; Meng, Qian ; Gao, Wang ; Ma, Chun ; Yu, Baoguo ; Jia, Fengshuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-12a36f6c8941d15425dd800a2c2a066f7b992f5e4cd4493a29c654c00f8544aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Autonomous cars</topic><topic>Availability</topic><topic>Dynamic tests</topic><topic>Extended Kalman filter (EKF)</topic><topic>Global navigation satellite system</topic><topic>huber’s M-estimation</topic><topic>Iterative methods</topic><topic>Kalman filters</topic><topic>loosely couple</topic><topic>multisensor integration</topic><topic>Navigation systems</topic><topic>Particle measurements</topic><topic>Pollution measurement</topic><topic>projection statistics (PSs)</topic><topic>Redundancy</topic><topic>Regression models</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Safety critical</topic><topic>Sensors</topic><topic>State estimation</topic><topic>Statistical analysis</topic><topic>Street canyons</topic><topic>urban canyon</topic><topic>Urban environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yingying</creatorcontrib><creatorcontrib>Pan, Shuguo</creatorcontrib><creatorcontrib>Meng, Qian</creatorcontrib><creatorcontrib>Gao, Wang</creatorcontrib><creatorcontrib>Ma, Chun</creatorcontrib><creatorcontrib>Yu, Baoguo</creatorcontrib><creatorcontrib>Jia, Fengshuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yingying</au><au>Pan, Shuguo</au><au>Meng, Qian</au><au>Gao, Wang</au><au>Ma, Chun</au><au>Yu, Baoguo</au><au>Jia, Fengshuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Kalman Filter Enhanced by Projection Statistic Detector for Multisensor Navigation in Urban Canyon Environment</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>23</volume><issue>9</issue><spage>9832</spage><epage>9847</epage><pages>9832-9847</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Multisensor navigation via redundancy and complementary has been widely applied to safety-critical services, such as self-driving vehicles. To improve the robustness and reliability of the multisensor navigation system in urban canyon environments, a robust Kalman filter (RKF) method enhanced by the projection statistic (PS) detector is proposed in this work. Based on a statistical consistency check, the availability of measurements from observation sensors is preevaluated by the PS criterion. The new iterative Huber's M-estimation with the exclusion function is implemented on the linear regression model for robust state estimation. The effectiveness of the proposed algorithm was verified by a dynamic test in the representative urban canyon environment. Our approach shows significant superiority and robustness among the comparative experiments, where the 3-D root-mean-square (rms) error is limited to 3.33 m. The biased measurements can be effectively identified and removed by the PS detector with a given significance level. The new iterative Huber's M-estimation assisted by the prior availability knowledge enables the integration solution more robust and reliable. The presented robust method is pretty suitable for multisensor navigation in urban canyon environments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3230708</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0724-9020</orcidid><orcidid>https://orcid.org/0000-0003-3122-208X</orcidid><orcidid>https://orcid.org/0000-0002-2149-1086</orcidid><orcidid>https://orcid.org/0000-0002-3006-7519</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2023-05, Vol.23 (9), p.9832-9847 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2808830451 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Autonomous cars Availability Dynamic tests Extended Kalman filter (EKF) Global navigation satellite system huber’s M-estimation Iterative methods Kalman filters loosely couple multisensor integration Navigation systems Particle measurements Pollution measurement projection statistics (PSs) Redundancy Regression models Robustness Robustness (mathematics) Safety critical Sensors State estimation Statistical analysis Street canyons urban canyon Urban environments |
title | Robust Kalman Filter Enhanced by Projection Statistic Detector for Multisensor Navigation in Urban Canyon Environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Kalman%20Filter%20Enhanced%20by%20Projection%20Statistic%20Detector%20for%20Multisensor%20Navigation%20in%20Urban%20Canyon%20Environment&rft.jtitle=IEEE%20sensors%20journal&rft.au=Jiang,%20Yingying&rft.date=2023-05-01&rft.volume=23&rft.issue=9&rft.spage=9832&rft.epage=9847&rft.pages=9832-9847&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3230708&rft_dat=%3Cproquest_cross%3E2808830451%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-12a36f6c8941d15425dd800a2c2a066f7b992f5e4cd4493a29c654c00f8544aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2808830451&rft_id=info:pmid/&rft_ieee_id=9998544&rfr_iscdi=true |