Loading…

Robust Kalman Filter Enhanced by Projection Statistic Detector for Multisensor Navigation in Urban Canyon Environment

Multisensor navigation via redundancy and complementary has been widely applied to safety-critical services, such as self-driving vehicles. To improve the robustness and reliability of the multisensor navigation system in urban canyon environments, a robust Kalman filter (RKF) method enhanced by the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2023-05, Vol.23 (9), p.9832-9847
Main Authors: Jiang, Yingying, Pan, Shuguo, Meng, Qian, Gao, Wang, Ma, Chun, Yu, Baoguo, Jia, Fengshuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-12a36f6c8941d15425dd800a2c2a066f7b992f5e4cd4493a29c654c00f8544aa3
cites cdi_FETCH-LOGICAL-c293t-12a36f6c8941d15425dd800a2c2a066f7b992f5e4cd4493a29c654c00f8544aa3
container_end_page 9847
container_issue 9
container_start_page 9832
container_title IEEE sensors journal
container_volume 23
creator Jiang, Yingying
Pan, Shuguo
Meng, Qian
Gao, Wang
Ma, Chun
Yu, Baoguo
Jia, Fengshuo
description Multisensor navigation via redundancy and complementary has been widely applied to safety-critical services, such as self-driving vehicles. To improve the robustness and reliability of the multisensor navigation system in urban canyon environments, a robust Kalman filter (RKF) method enhanced by the projection statistic (PS) detector is proposed in this work. Based on a statistical consistency check, the availability of measurements from observation sensors is preevaluated by the PS criterion. The new iterative Huber's M-estimation with the exclusion function is implemented on the linear regression model for robust state estimation. The effectiveness of the proposed algorithm was verified by a dynamic test in the representative urban canyon environment. Our approach shows significant superiority and robustness among the comparative experiments, where the 3-D root-mean-square (rms) error is limited to 3.33 m. The biased measurements can be effectively identified and removed by the PS detector with a given significance level. The new iterative Huber's M-estimation assisted by the prior availability knowledge enables the integration solution more robust and reliable. The presented robust method is pretty suitable for multisensor navigation in urban canyon environments.
doi_str_mv 10.1109/JSEN.2022.3230708
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2808830451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9998544</ieee_id><sourcerecordid>2808830451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-12a36f6c8941d15425dd800a2c2a066f7b992f5e4cd4493a29c654c00f8544aa3</originalsourceid><addsrcrecordid>eNo9UFtLwzAULqLgnP4A8SXgc2eubfIoc_M2pzgHvpU0TTWjS2eSDvbvTd3w4XDO-fgu8CXJJYIjhKC4eVpM5iMMMR4RTGAO-VEyQIzxFOWUH_c3gSkl-edpcub9CkIkcpYPku69LTsfwLNs1tKCqWmCdmBiv6VVugLlDry5dqVVMK0FiyCD8cEocKdDxFoH6jgvXRNhbX2853JrvuQf21iwdGU0HUu7i__Ebo1r7VrbcJ6c1LLx-uKwh8lyOvkYP6Sz1_vH8e0sVViQkCIsSVZniguKKsQoZlXFIZRYYQmzrM5LIXDNNFUVpYJILFTGqIKw5oxSKckwud77blz702kfilXbORsjC8wh5wRShiIL7VnKtd47XRcbZ9bS7QoEi77dom-36NstDu1GzdVeY7TW_3whRJ9MfgFWOncH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808830451</pqid></control><display><type>article</type><title>Robust Kalman Filter Enhanced by Projection Statistic Detector for Multisensor Navigation in Urban Canyon Environment</title><source>IEEE Xplore (Online service)</source><creator>Jiang, Yingying ; Pan, Shuguo ; Meng, Qian ; Gao, Wang ; Ma, Chun ; Yu, Baoguo ; Jia, Fengshuo</creator><creatorcontrib>Jiang, Yingying ; Pan, Shuguo ; Meng, Qian ; Gao, Wang ; Ma, Chun ; Yu, Baoguo ; Jia, Fengshuo</creatorcontrib><description>Multisensor navigation via redundancy and complementary has been widely applied to safety-critical services, such as self-driving vehicles. To improve the robustness and reliability of the multisensor navigation system in urban canyon environments, a robust Kalman filter (RKF) method enhanced by the projection statistic (PS) detector is proposed in this work. Based on a statistical consistency check, the availability of measurements from observation sensors is preevaluated by the PS criterion. The new iterative Huber's M-estimation with the exclusion function is implemented on the linear regression model for robust state estimation. The effectiveness of the proposed algorithm was verified by a dynamic test in the representative urban canyon environment. Our approach shows significant superiority and robustness among the comparative experiments, where the 3-D root-mean-square (rms) error is limited to 3.33 m. The biased measurements can be effectively identified and removed by the PS detector with a given significance level. The new iterative Huber's M-estimation assisted by the prior availability knowledge enables the integration solution more robust and reliable. The presented robust method is pretty suitable for multisensor navigation in urban canyon environments.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3230708</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autonomous cars ; Availability ; Dynamic tests ; Extended Kalman filter (EKF) ; Global navigation satellite system ; huber’s M-estimation ; Iterative methods ; Kalman filters ; loosely couple ; multisensor integration ; Navigation systems ; Particle measurements ; Pollution measurement ; projection statistics (PSs) ; Redundancy ; Regression models ; Robustness ; Robustness (mathematics) ; Safety critical ; Sensors ; State estimation ; Statistical analysis ; Street canyons ; urban canyon ; Urban environments</subject><ispartof>IEEE sensors journal, 2023-05, Vol.23 (9), p.9832-9847</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-12a36f6c8941d15425dd800a2c2a066f7b992f5e4cd4493a29c654c00f8544aa3</citedby><cites>FETCH-LOGICAL-c293t-12a36f6c8941d15425dd800a2c2a066f7b992f5e4cd4493a29c654c00f8544aa3</cites><orcidid>0000-0003-0724-9020 ; 0000-0003-3122-208X ; 0000-0002-2149-1086 ; 0000-0002-3006-7519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9998544$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jiang, Yingying</creatorcontrib><creatorcontrib>Pan, Shuguo</creatorcontrib><creatorcontrib>Meng, Qian</creatorcontrib><creatorcontrib>Gao, Wang</creatorcontrib><creatorcontrib>Ma, Chun</creatorcontrib><creatorcontrib>Yu, Baoguo</creatorcontrib><creatorcontrib>Jia, Fengshuo</creatorcontrib><title>Robust Kalman Filter Enhanced by Projection Statistic Detector for Multisensor Navigation in Urban Canyon Environment</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Multisensor navigation via redundancy and complementary has been widely applied to safety-critical services, such as self-driving vehicles. To improve the robustness and reliability of the multisensor navigation system in urban canyon environments, a robust Kalman filter (RKF) method enhanced by the projection statistic (PS) detector is proposed in this work. Based on a statistical consistency check, the availability of measurements from observation sensors is preevaluated by the PS criterion. The new iterative Huber's M-estimation with the exclusion function is implemented on the linear regression model for robust state estimation. The effectiveness of the proposed algorithm was verified by a dynamic test in the representative urban canyon environment. Our approach shows significant superiority and robustness among the comparative experiments, where the 3-D root-mean-square (rms) error is limited to 3.33 m. The biased measurements can be effectively identified and removed by the PS detector with a given significance level. The new iterative Huber's M-estimation assisted by the prior availability knowledge enables the integration solution more robust and reliable. The presented robust method is pretty suitable for multisensor navigation in urban canyon environments.</description><subject>Algorithms</subject><subject>Autonomous cars</subject><subject>Availability</subject><subject>Dynamic tests</subject><subject>Extended Kalman filter (EKF)</subject><subject>Global navigation satellite system</subject><subject>huber’s M-estimation</subject><subject>Iterative methods</subject><subject>Kalman filters</subject><subject>loosely couple</subject><subject>multisensor integration</subject><subject>Navigation systems</subject><subject>Particle measurements</subject><subject>Pollution measurement</subject><subject>projection statistics (PSs)</subject><subject>Redundancy</subject><subject>Regression models</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Safety critical</subject><subject>Sensors</subject><subject>State estimation</subject><subject>Statistical analysis</subject><subject>Street canyons</subject><subject>urban canyon</subject><subject>Urban environments</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UFtLwzAULqLgnP4A8SXgc2eubfIoc_M2pzgHvpU0TTWjS2eSDvbvTd3w4XDO-fgu8CXJJYIjhKC4eVpM5iMMMR4RTGAO-VEyQIzxFOWUH_c3gSkl-edpcub9CkIkcpYPku69LTsfwLNs1tKCqWmCdmBiv6VVugLlDry5dqVVMK0FiyCD8cEocKdDxFoH6jgvXRNhbX2853JrvuQf21iwdGU0HUu7i__Ebo1r7VrbcJ6c1LLx-uKwh8lyOvkYP6Sz1_vH8e0sVViQkCIsSVZniguKKsQoZlXFIZRYYQmzrM5LIXDNNFUVpYJILFTGqIKw5oxSKckwud77blz702kfilXbORsjC8wh5wRShiIL7VnKtd47XRcbZ9bS7QoEi77dom-36NstDu1GzdVeY7TW_3whRJ9MfgFWOncH</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Jiang, Yingying</creator><creator>Pan, Shuguo</creator><creator>Meng, Qian</creator><creator>Gao, Wang</creator><creator>Ma, Chun</creator><creator>Yu, Baoguo</creator><creator>Jia, Fengshuo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0724-9020</orcidid><orcidid>https://orcid.org/0000-0003-3122-208X</orcidid><orcidid>https://orcid.org/0000-0002-2149-1086</orcidid><orcidid>https://orcid.org/0000-0002-3006-7519</orcidid></search><sort><creationdate>20230501</creationdate><title>Robust Kalman Filter Enhanced by Projection Statistic Detector for Multisensor Navigation in Urban Canyon Environment</title><author>Jiang, Yingying ; Pan, Shuguo ; Meng, Qian ; Gao, Wang ; Ma, Chun ; Yu, Baoguo ; Jia, Fengshuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-12a36f6c8941d15425dd800a2c2a066f7b992f5e4cd4493a29c654c00f8544aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Autonomous cars</topic><topic>Availability</topic><topic>Dynamic tests</topic><topic>Extended Kalman filter (EKF)</topic><topic>Global navigation satellite system</topic><topic>huber’s M-estimation</topic><topic>Iterative methods</topic><topic>Kalman filters</topic><topic>loosely couple</topic><topic>multisensor integration</topic><topic>Navigation systems</topic><topic>Particle measurements</topic><topic>Pollution measurement</topic><topic>projection statistics (PSs)</topic><topic>Redundancy</topic><topic>Regression models</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Safety critical</topic><topic>Sensors</topic><topic>State estimation</topic><topic>Statistical analysis</topic><topic>Street canyons</topic><topic>urban canyon</topic><topic>Urban environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yingying</creatorcontrib><creatorcontrib>Pan, Shuguo</creatorcontrib><creatorcontrib>Meng, Qian</creatorcontrib><creatorcontrib>Gao, Wang</creatorcontrib><creatorcontrib>Ma, Chun</creatorcontrib><creatorcontrib>Yu, Baoguo</creatorcontrib><creatorcontrib>Jia, Fengshuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yingying</au><au>Pan, Shuguo</au><au>Meng, Qian</au><au>Gao, Wang</au><au>Ma, Chun</au><au>Yu, Baoguo</au><au>Jia, Fengshuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Kalman Filter Enhanced by Projection Statistic Detector for Multisensor Navigation in Urban Canyon Environment</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>23</volume><issue>9</issue><spage>9832</spage><epage>9847</epage><pages>9832-9847</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Multisensor navigation via redundancy and complementary has been widely applied to safety-critical services, such as self-driving vehicles. To improve the robustness and reliability of the multisensor navigation system in urban canyon environments, a robust Kalman filter (RKF) method enhanced by the projection statistic (PS) detector is proposed in this work. Based on a statistical consistency check, the availability of measurements from observation sensors is preevaluated by the PS criterion. The new iterative Huber's M-estimation with the exclusion function is implemented on the linear regression model for robust state estimation. The effectiveness of the proposed algorithm was verified by a dynamic test in the representative urban canyon environment. Our approach shows significant superiority and robustness among the comparative experiments, where the 3-D root-mean-square (rms) error is limited to 3.33 m. The biased measurements can be effectively identified and removed by the PS detector with a given significance level. The new iterative Huber's M-estimation assisted by the prior availability knowledge enables the integration solution more robust and reliable. The presented robust method is pretty suitable for multisensor navigation in urban canyon environments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3230708</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0724-9020</orcidid><orcidid>https://orcid.org/0000-0003-3122-208X</orcidid><orcidid>https://orcid.org/0000-0002-2149-1086</orcidid><orcidid>https://orcid.org/0000-0002-3006-7519</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-05, Vol.23 (9), p.9832-9847
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2808830451
source IEEE Xplore (Online service)
subjects Algorithms
Autonomous cars
Availability
Dynamic tests
Extended Kalman filter (EKF)
Global navigation satellite system
huber’s M-estimation
Iterative methods
Kalman filters
loosely couple
multisensor integration
Navigation systems
Particle measurements
Pollution measurement
projection statistics (PSs)
Redundancy
Regression models
Robustness
Robustness (mathematics)
Safety critical
Sensors
State estimation
Statistical analysis
Street canyons
urban canyon
Urban environments
title Robust Kalman Filter Enhanced by Projection Statistic Detector for Multisensor Navigation in Urban Canyon Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Kalman%20Filter%20Enhanced%20by%20Projection%20Statistic%20Detector%20for%20Multisensor%20Navigation%20in%20Urban%20Canyon%20Environment&rft.jtitle=IEEE%20sensors%20journal&rft.au=Jiang,%20Yingying&rft.date=2023-05-01&rft.volume=23&rft.issue=9&rft.spage=9832&rft.epage=9847&rft.pages=9832-9847&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3230708&rft_dat=%3Cproquest_cross%3E2808830451%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-12a36f6c8941d15425dd800a2c2a066f7b992f5e4cd4493a29c654c00f8544aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2808830451&rft_id=info:pmid/&rft_ieee_id=9998544&rfr_iscdi=true