Loading…

Increasing the Power: Absorption Bleach, Thermal Quenching, and Auger Quenching of the Red‐Emitting Phosphor K2TiF6:Mn4

Mn4+‐doped fluorides are popular phosphors for warm‐white lighting, converting blue light from light‐emitting diodes (LEDs) into red light. However, they suffer from droop, that is, decreasing performance at increasing power, limiting their applicability for high‐power applications. Previous studies...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2023-05, Vol.11 (9), p.n/a
Main Authors: Wit, Jur W., Swieten, Thomas P., Haar, Marie Anne, Meijerink, Andries, Rabouw, Freddy T.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced optical materials
container_volume 11
creator Wit, Jur W.
Swieten, Thomas P.
Haar, Marie Anne
Meijerink, Andries
Rabouw, Freddy T.
description Mn4+‐doped fluorides are popular phosphors for warm‐white lighting, converting blue light from light‐emitting diodes (LEDs) into red light. However, they suffer from droop, that is, decreasing performance at increasing power, limiting their applicability for high‐power applications. Previous studies highlight different causes of droop. Here, a unified picture of droop of Mn4+‐doped K2TiF6, accounting for all previously proposed mechanisms, is provided. Combining continuous‐wave and pulsed experiments on samples of different Mn4+ content with kinetic Monte Carlo modeling, the contributions of absorption bleach, thermal quenching, and Auger quenching at different excitation densities, are quantified. This work contributes to understanding the fundamental limitations of these materials and may inspire strategies to make Mn4+‐doped fluorides more efficient in high‐power applications. The droop behavior of K2TiF6:x% Mn4+ (x = 0.1, 0.8, 1.3, and 5.4) is explained using a combination of experiments and simulations. High excitation powers create a high Mn4+ excited‐state population. The phosphor then suffers from absorption bleach, Auger quenching, and thermal quenching. These effects can be partially remedied by operating the phosphor just below the thermal‐quenching temperature.
doi_str_mv 10.1002/adom.202202974
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2808966506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808966506</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2034-7b804d30423402a97dab560039b7e75f82512f01f9640d2168fccaa7bbc98e253</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsGi3rgfcNvXOZPIz3cXaarGlVep6mCSTJiXJxElC6c5H8Bl9ElMrVbhw7zkczoUPoRsCQwJA72SsiyEF2g332BnqUcIdi4BHzv_dl6hf11sA6ITNmddD-1kZGSXrrNzgJlV4pXfKjHAQ1tpUTaZLfJ8rGaUDvE6VKWSOX1pVRmmXH2BZxjhoN8r8mVgnPz2vKv76-JwUWdMc3FWq6yrVBj_TdTZ1R4uSXaOLROa16v_uK_Q2nazHT9Z8-TgbB3OromAzywt9YLENjNoMqOReLEPHBbB56CnPSXzqEJoASbjLIKbE9ZMoktILw4j7ijr2Fbo99lZGv7eqbsRWt6bsXgrqg89d1wG3S_Fjapflai8qkxXS7AUBccArDnjFCa8IHpaLk7K_AUp-cBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808966506</pqid></control><display><type>article</type><title>Increasing the Power: Absorption Bleach, Thermal Quenching, and Auger Quenching of the Red‐Emitting Phosphor K2TiF6:Mn4</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wit, Jur W. ; Swieten, Thomas P. ; Haar, Marie Anne ; Meijerink, Andries ; Rabouw, Freddy T.</creator><creatorcontrib>Wit, Jur W. ; Swieten, Thomas P. ; Haar, Marie Anne ; Meijerink, Andries ; Rabouw, Freddy T.</creatorcontrib><description>Mn4+‐doped fluorides are popular phosphors for warm‐white lighting, converting blue light from light‐emitting diodes (LEDs) into red light. However, they suffer from droop, that is, decreasing performance at increasing power, limiting their applicability for high‐power applications. Previous studies highlight different causes of droop. Here, a unified picture of droop of Mn4+‐doped K2TiF6, accounting for all previously proposed mechanisms, is provided. Combining continuous‐wave and pulsed experiments on samples of different Mn4+ content with kinetic Monte Carlo modeling, the contributions of absorption bleach, thermal quenching, and Auger quenching at different excitation densities, are quantified. This work contributes to understanding the fundamental limitations of these materials and may inspire strategies to make Mn4+‐doped fluorides more efficient in high‐power applications. The droop behavior of K2TiF6:x% Mn4+ (x = 0.1, 0.8, 1.3, and 5.4) is explained using a combination of experiments and simulations. High excitation powers create a high Mn4+ excited‐state population. The phosphor then suffers from absorption bleach, Auger quenching, and thermal quenching. These effects can be partially remedied by operating the phosphor just below the thermal‐quenching temperature.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202202974</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption ; absorption bleach ; Auger quenching ; Augers ; Bleaches ; droop ; Fluorides ; Light emitting diodes ; Materials science ; Optics ; Phosphors ; Quenching ; red phosphor ; thermal quenching</subject><ispartof>Advanced optical materials, 2023-05, Vol.11 (9), p.n/a</ispartof><rights>2023 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4775-0859 ; 0000-0003-2581-6076 ; 0000-0002-1080-2045 ; 0000-0003-3573-9289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wit, Jur W.</creatorcontrib><creatorcontrib>Swieten, Thomas P.</creatorcontrib><creatorcontrib>Haar, Marie Anne</creatorcontrib><creatorcontrib>Meijerink, Andries</creatorcontrib><creatorcontrib>Rabouw, Freddy T.</creatorcontrib><title>Increasing the Power: Absorption Bleach, Thermal Quenching, and Auger Quenching of the Red‐Emitting Phosphor K2TiF6:Mn4</title><title>Advanced optical materials</title><description>Mn4+‐doped fluorides are popular phosphors for warm‐white lighting, converting blue light from light‐emitting diodes (LEDs) into red light. However, they suffer from droop, that is, decreasing performance at increasing power, limiting their applicability for high‐power applications. Previous studies highlight different causes of droop. Here, a unified picture of droop of Mn4+‐doped K2TiF6, accounting for all previously proposed mechanisms, is provided. Combining continuous‐wave and pulsed experiments on samples of different Mn4+ content with kinetic Monte Carlo modeling, the contributions of absorption bleach, thermal quenching, and Auger quenching at different excitation densities, are quantified. This work contributes to understanding the fundamental limitations of these materials and may inspire strategies to make Mn4+‐doped fluorides more efficient in high‐power applications. The droop behavior of K2TiF6:x% Mn4+ (x = 0.1, 0.8, 1.3, and 5.4) is explained using a combination of experiments and simulations. High excitation powers create a high Mn4+ excited‐state population. The phosphor then suffers from absorption bleach, Auger quenching, and thermal quenching. These effects can be partially remedied by operating the phosphor just below the thermal‐quenching temperature.</description><subject>Absorption</subject><subject>absorption bleach</subject><subject>Auger quenching</subject><subject>Augers</subject><subject>Bleaches</subject><subject>droop</subject><subject>Fluorides</subject><subject>Light emitting diodes</subject><subject>Materials science</subject><subject>Optics</subject><subject>Phosphors</subject><subject>Quenching</subject><subject>red phosphor</subject><subject>thermal quenching</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpNkM1Kw0AUhQdRsGi3rgfcNvXOZPIz3cXaarGlVep6mCSTJiXJxElC6c5H8Bl9ElMrVbhw7zkczoUPoRsCQwJA72SsiyEF2g332BnqUcIdi4BHzv_dl6hf11sA6ITNmddD-1kZGSXrrNzgJlV4pXfKjHAQ1tpUTaZLfJ8rGaUDvE6VKWSOX1pVRmmXH2BZxjhoN8r8mVgnPz2vKv76-JwUWdMc3FWq6yrVBj_TdTZ1R4uSXaOLROa16v_uK_Q2nazHT9Z8-TgbB3OromAzywt9YLENjNoMqOReLEPHBbB56CnPSXzqEJoASbjLIKbE9ZMoktILw4j7ijr2Fbo99lZGv7eqbsRWt6bsXgrqg89d1wG3S_Fjapflai8qkxXS7AUBccArDnjFCa8IHpaLk7K_AUp-cBg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Wit, Jur W.</creator><creator>Swieten, Thomas P.</creator><creator>Haar, Marie Anne</creator><creator>Meijerink, Andries</creator><creator>Rabouw, Freddy T.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4775-0859</orcidid><orcidid>https://orcid.org/0000-0003-2581-6076</orcidid><orcidid>https://orcid.org/0000-0002-1080-2045</orcidid><orcidid>https://orcid.org/0000-0003-3573-9289</orcidid></search><sort><creationdate>20230501</creationdate><title>Increasing the Power: Absorption Bleach, Thermal Quenching, and Auger Quenching of the Red‐Emitting Phosphor K2TiF6:Mn4</title><author>Wit, Jur W. ; Swieten, Thomas P. ; Haar, Marie Anne ; Meijerink, Andries ; Rabouw, Freddy T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2034-7b804d30423402a97dab560039b7e75f82512f01f9640d2168fccaa7bbc98e253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>absorption bleach</topic><topic>Auger quenching</topic><topic>Augers</topic><topic>Bleaches</topic><topic>droop</topic><topic>Fluorides</topic><topic>Light emitting diodes</topic><topic>Materials science</topic><topic>Optics</topic><topic>Phosphors</topic><topic>Quenching</topic><topic>red phosphor</topic><topic>thermal quenching</topic><toplevel>online_resources</toplevel><creatorcontrib>Wit, Jur W.</creatorcontrib><creatorcontrib>Swieten, Thomas P.</creatorcontrib><creatorcontrib>Haar, Marie Anne</creatorcontrib><creatorcontrib>Meijerink, Andries</creatorcontrib><creatorcontrib>Rabouw, Freddy T.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wit, Jur W.</au><au>Swieten, Thomas P.</au><au>Haar, Marie Anne</au><au>Meijerink, Andries</au><au>Rabouw, Freddy T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing the Power: Absorption Bleach, Thermal Quenching, and Auger Quenching of the Red‐Emitting Phosphor K2TiF6:Mn4</atitle><jtitle>Advanced optical materials</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>11</volume><issue>9</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Mn4+‐doped fluorides are popular phosphors for warm‐white lighting, converting blue light from light‐emitting diodes (LEDs) into red light. However, they suffer from droop, that is, decreasing performance at increasing power, limiting their applicability for high‐power applications. Previous studies highlight different causes of droop. Here, a unified picture of droop of Mn4+‐doped K2TiF6, accounting for all previously proposed mechanisms, is provided. Combining continuous‐wave and pulsed experiments on samples of different Mn4+ content with kinetic Monte Carlo modeling, the contributions of absorption bleach, thermal quenching, and Auger quenching at different excitation densities, are quantified. This work contributes to understanding the fundamental limitations of these materials and may inspire strategies to make Mn4+‐doped fluorides more efficient in high‐power applications. The droop behavior of K2TiF6:x% Mn4+ (x = 0.1, 0.8, 1.3, and 5.4) is explained using a combination of experiments and simulations. High excitation powers create a high Mn4+ excited‐state population. The phosphor then suffers from absorption bleach, Auger quenching, and thermal quenching. These effects can be partially remedied by operating the phosphor just below the thermal‐quenching temperature.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202202974</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4775-0859</orcidid><orcidid>https://orcid.org/0000-0003-2581-6076</orcidid><orcidid>https://orcid.org/0000-0002-1080-2045</orcidid><orcidid>https://orcid.org/0000-0003-3573-9289</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2023-05, Vol.11 (9), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2808966506
source Wiley-Blackwell Read & Publish Collection
subjects Absorption
absorption bleach
Auger quenching
Augers
Bleaches
droop
Fluorides
Light emitting diodes
Materials science
Optics
Phosphors
Quenching
red phosphor
thermal quenching
title Increasing the Power: Absorption Bleach, Thermal Quenching, and Auger Quenching of the Red‐Emitting Phosphor K2TiF6:Mn4
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20the%20Power:%20Absorption%20Bleach,%20Thermal%20Quenching,%20and%20Auger%20Quenching%20of%20the%20Red%E2%80%90Emitting%20Phosphor%20K2TiF6:Mn4&rft.jtitle=Advanced%20optical%20materials&rft.au=Wit,%20Jur%20W.&rft.date=2023-05-01&rft.volume=11&rft.issue=9&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202202974&rft_dat=%3Cproquest_wiley%3E2808966506%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2034-7b804d30423402a97dab560039b7e75f82512f01f9640d2168fccaa7bbc98e253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2808966506&rft_id=info:pmid/&rfr_iscdi=true