Loading…

The Fourier Transform Associated to the k-Hyperbolic Dirac Operator

The polynomial null solutions of the k -hyperbolic Dirac operator are investigated by the osp ( 1 | 2 ) approach. These solutions are then utilized to construct the (fractional) Fourier transform associated to the k -hyperbolic Dirac operator. The resulting integral kernels are found to be a specifi...

Full description

Saved in:
Bibliographic Details
Published in:Advances in applied Clifford algebras 2023-07, Vol.33 (3), Article 26
Main Authors: Li, Wenxin, Lian, Pan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-73772043716bd981686530f7306fa14ad4b93cd063ea8af92ee4083b1deed5433
container_end_page
container_issue 3
container_start_page
container_title Advances in applied Clifford algebras
container_volume 33
creator Li, Wenxin
Lian, Pan
description The polynomial null solutions of the k -hyperbolic Dirac operator are investigated by the osp ( 1 | 2 ) approach. These solutions are then utilized to construct the (fractional) Fourier transform associated to the k -hyperbolic Dirac operator. The resulting integral kernels are found to be a specific kind of Dunkl kernels. Additionally, we give tight uncertainty inequalities for three distinct fractional Fourier transforms that we have defined. These inequalities are new even for the ordinary fractional Hankel and Weinstein transforms.
doi_str_mv 10.1007/s00006-023-01274-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2809101570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809101570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-73772043716bd981686530f7306fa14ad4b93cd063ea8af92ee4083b1deed5433</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOH_HHWBVKkSp1CbPlJA6ktHGx0yH_HkOQ2LjldNLz3p0ehG4p3FMA9ZAglyTAOAHKlCDjGZpRKSkRBsw5mgHVmigAc4muUtoBCMm5nqFl-e7xKpxi5yMuo-tTG-IBL1IKdecG3-Ah4CEzH2Q9Hn2swr6r8WMXXY23eXZDiNfoonX75G9--xy9rp7K5Zpsts8vy8WG1AxgIIorxUBwRWXVGE2llgWHVnGQraPCNaIyvG5Acu-0aw3zXoDmFW28bwrB-RzdTXuPMXyefBrsLj_e55OWaTAUaKEgU2yi6hhSir61x9gdXBwtBfsty06ybJZlf2TZMYf4FEoZ7t98_Fv9T-oLlqJrng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809101570</pqid></control><display><type>article</type><title>The Fourier Transform Associated to the k-Hyperbolic Dirac Operator</title><source>Springer Link</source><creator>Li, Wenxin ; Lian, Pan</creator><creatorcontrib>Li, Wenxin ; Lian, Pan</creatorcontrib><description>The polynomial null solutions of the k -hyperbolic Dirac operator are investigated by the osp ( 1 | 2 ) approach. These solutions are then utilized to construct the (fractional) Fourier transform associated to the k -hyperbolic Dirac operator. The resulting integral kernels are found to be a specific kind of Dunkl kernels. Additionally, we give tight uncertainty inequalities for three distinct fractional Fourier transforms that we have defined. These inequalities are new even for the ordinary fractional Hankel and Weinstein transforms.</description><identifier>ISSN: 0188-7009</identifier><identifier>EISSN: 1661-4909</identifier><identifier>DOI: 10.1007/s00006-023-01274-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Fourier transforms ; Inequalities ; Kernels ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Physics ; Physics and Astronomy ; Polynomials ; Theoretical</subject><ispartof>Advances in applied Clifford algebras, 2023-07, Vol.33 (3), Article 26</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-73772043716bd981686530f7306fa14ad4b93cd063ea8af92ee4083b1deed5433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Wenxin</creatorcontrib><creatorcontrib>Lian, Pan</creatorcontrib><title>The Fourier Transform Associated to the k-Hyperbolic Dirac Operator</title><title>Advances in applied Clifford algebras</title><addtitle>Adv. Appl. Clifford Algebras</addtitle><description>The polynomial null solutions of the k -hyperbolic Dirac operator are investigated by the osp ( 1 | 2 ) approach. These solutions are then utilized to construct the (fractional) Fourier transform associated to the k -hyperbolic Dirac operator. The resulting integral kernels are found to be a specific kind of Dunkl kernels. Additionally, we give tight uncertainty inequalities for three distinct fractional Fourier transforms that we have defined. These inequalities are new even for the ordinary fractional Hankel and Weinstein transforms.</description><subject>Applications of Mathematics</subject><subject>Fourier transforms</subject><subject>Inequalities</subject><subject>Kernels</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Theoretical</subject><issn>0188-7009</issn><issn>1661-4909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOH_HHWBVKkSp1CbPlJA6ktHGx0yH_HkOQ2LjldNLz3p0ehG4p3FMA9ZAglyTAOAHKlCDjGZpRKSkRBsw5mgHVmigAc4muUtoBCMm5nqFl-e7xKpxi5yMuo-tTG-IBL1IKdecG3-Ah4CEzH2Q9Hn2swr6r8WMXXY23eXZDiNfoonX75G9--xy9rp7K5Zpsts8vy8WG1AxgIIorxUBwRWXVGE2llgWHVnGQraPCNaIyvG5Acu-0aw3zXoDmFW28bwrB-RzdTXuPMXyefBrsLj_e55OWaTAUaKEgU2yi6hhSir61x9gdXBwtBfsty06ybJZlf2TZMYf4FEoZ7t98_Fv9T-oLlqJrng</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Li, Wenxin</creator><creator>Lian, Pan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>The Fourier Transform Associated to the k-Hyperbolic Dirac Operator</title><author>Li, Wenxin ; Lian, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-73772043716bd981686530f7306fa14ad4b93cd063ea8af92ee4083b1deed5433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Fourier transforms</topic><topic>Inequalities</topic><topic>Kernels</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenxin</creatorcontrib><creatorcontrib>Lian, Pan</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in applied Clifford algebras</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenxin</au><au>Lian, Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Fourier Transform Associated to the k-Hyperbolic Dirac Operator</atitle><jtitle>Advances in applied Clifford algebras</jtitle><stitle>Adv. Appl. Clifford Algebras</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>33</volume><issue>3</issue><artnum>26</artnum><issn>0188-7009</issn><eissn>1661-4909</eissn><abstract>The polynomial null solutions of the k -hyperbolic Dirac operator are investigated by the osp ( 1 | 2 ) approach. These solutions are then utilized to construct the (fractional) Fourier transform associated to the k -hyperbolic Dirac operator. The resulting integral kernels are found to be a specific kind of Dunkl kernels. Additionally, we give tight uncertainty inequalities for three distinct fractional Fourier transforms that we have defined. These inequalities are new even for the ordinary fractional Hankel and Weinstein transforms.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00006-023-01274-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 0188-7009
ispartof Advances in applied Clifford algebras, 2023-07, Vol.33 (3), Article 26
issn 0188-7009
1661-4909
language eng
recordid cdi_proquest_journals_2809101570
source Springer Link
subjects Applications of Mathematics
Fourier transforms
Inequalities
Kernels
Mathematical and Computational Physics
Mathematical Methods in Physics
Physics
Physics and Astronomy
Polynomials
Theoretical
title The Fourier Transform Associated to the k-Hyperbolic Dirac Operator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Fourier%20Transform%20Associated%20to%20the%20k-Hyperbolic%20Dirac%20Operator&rft.jtitle=Advances%20in%20applied%20Clifford%20algebras&rft.au=Li,%20Wenxin&rft.date=2023-07-01&rft.volume=33&rft.issue=3&rft.artnum=26&rft.issn=0188-7009&rft.eissn=1661-4909&rft_id=info:doi/10.1007/s00006-023-01274-y&rft_dat=%3Cproquest_cross%3E2809101570%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-73772043716bd981686530f7306fa14ad4b93cd063ea8af92ee4083b1deed5433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2809101570&rft_id=info:pmid/&rfr_iscdi=true