Loading…
The Fourier Transform Associated to the k-Hyperbolic Dirac Operator
The polynomial null solutions of the k -hyperbolic Dirac operator are investigated by the osp ( 1 | 2 ) approach. These solutions are then utilized to construct the (fractional) Fourier transform associated to the k -hyperbolic Dirac operator. The resulting integral kernels are found to be a specifi...
Saved in:
Published in: | Advances in applied Clifford algebras 2023-07, Vol.33 (3), Article 26 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-73772043716bd981686530f7306fa14ad4b93cd063ea8af92ee4083b1deed5433 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Advances in applied Clifford algebras |
container_volume | 33 |
creator | Li, Wenxin Lian, Pan |
description | The polynomial null solutions of the
k
-hyperbolic Dirac operator are investigated by the
osp
(
1
|
2
)
approach. These solutions are then utilized to construct the (fractional) Fourier transform associated to the
k
-hyperbolic Dirac operator. The resulting integral kernels are found to be a specific kind of Dunkl kernels. Additionally, we give tight uncertainty inequalities for three distinct fractional Fourier transforms that we have defined. These inequalities are new even for the ordinary fractional Hankel and Weinstein transforms. |
doi_str_mv | 10.1007/s00006-023-01274-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2809101570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809101570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-73772043716bd981686530f7306fa14ad4b93cd063ea8af92ee4083b1deed5433</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOH_HHWBVKkSp1CbPlJA6ktHGx0yH_HkOQ2LjldNLz3p0ehG4p3FMA9ZAglyTAOAHKlCDjGZpRKSkRBsw5mgHVmigAc4muUtoBCMm5nqFl-e7xKpxi5yMuo-tTG-IBL1IKdecG3-Ah4CEzH2Q9Hn2swr6r8WMXXY23eXZDiNfoonX75G9--xy9rp7K5Zpsts8vy8WG1AxgIIorxUBwRWXVGE2llgWHVnGQraPCNaIyvG5Acu-0aw3zXoDmFW28bwrB-RzdTXuPMXyefBrsLj_e55OWaTAUaKEgU2yi6hhSir61x9gdXBwtBfsty06ybJZlf2TZMYf4FEoZ7t98_Fv9T-oLlqJrng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809101570</pqid></control><display><type>article</type><title>The Fourier Transform Associated to the k-Hyperbolic Dirac Operator</title><source>Springer Link</source><creator>Li, Wenxin ; Lian, Pan</creator><creatorcontrib>Li, Wenxin ; Lian, Pan</creatorcontrib><description>The polynomial null solutions of the
k
-hyperbolic Dirac operator are investigated by the
osp
(
1
|
2
)
approach. These solutions are then utilized to construct the (fractional) Fourier transform associated to the
k
-hyperbolic Dirac operator. The resulting integral kernels are found to be a specific kind of Dunkl kernels. Additionally, we give tight uncertainty inequalities for three distinct fractional Fourier transforms that we have defined. These inequalities are new even for the ordinary fractional Hankel and Weinstein transforms.</description><identifier>ISSN: 0188-7009</identifier><identifier>EISSN: 1661-4909</identifier><identifier>DOI: 10.1007/s00006-023-01274-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Fourier transforms ; Inequalities ; Kernels ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Physics ; Physics and Astronomy ; Polynomials ; Theoretical</subject><ispartof>Advances in applied Clifford algebras, 2023-07, Vol.33 (3), Article 26</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-73772043716bd981686530f7306fa14ad4b93cd063ea8af92ee4083b1deed5433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Wenxin</creatorcontrib><creatorcontrib>Lian, Pan</creatorcontrib><title>The Fourier Transform Associated to the k-Hyperbolic Dirac Operator</title><title>Advances in applied Clifford algebras</title><addtitle>Adv. Appl. Clifford Algebras</addtitle><description>The polynomial null solutions of the
k
-hyperbolic Dirac operator are investigated by the
osp
(
1
|
2
)
approach. These solutions are then utilized to construct the (fractional) Fourier transform associated to the
k
-hyperbolic Dirac operator. The resulting integral kernels are found to be a specific kind of Dunkl kernels. Additionally, we give tight uncertainty inequalities for three distinct fractional Fourier transforms that we have defined. These inequalities are new even for the ordinary fractional Hankel and Weinstein transforms.</description><subject>Applications of Mathematics</subject><subject>Fourier transforms</subject><subject>Inequalities</subject><subject>Kernels</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Theoretical</subject><issn>0188-7009</issn><issn>1661-4909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOH_HHWBVKkSp1CbPlJA6ktHGx0yH_HkOQ2LjldNLz3p0ehG4p3FMA9ZAglyTAOAHKlCDjGZpRKSkRBsw5mgHVmigAc4muUtoBCMm5nqFl-e7xKpxi5yMuo-tTG-IBL1IKdecG3-Ah4CEzH2Q9Hn2swr6r8WMXXY23eXZDiNfoonX75G9--xy9rp7K5Zpsts8vy8WG1AxgIIorxUBwRWXVGE2llgWHVnGQraPCNaIyvG5Acu-0aw3zXoDmFW28bwrB-RzdTXuPMXyefBrsLj_e55OWaTAUaKEgU2yi6hhSir61x9gdXBwtBfsty06ybJZlf2TZMYf4FEoZ7t98_Fv9T-oLlqJrng</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Li, Wenxin</creator><creator>Lian, Pan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>The Fourier Transform Associated to the k-Hyperbolic Dirac Operator</title><author>Li, Wenxin ; Lian, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-73772043716bd981686530f7306fa14ad4b93cd063ea8af92ee4083b1deed5433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Fourier transforms</topic><topic>Inequalities</topic><topic>Kernels</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenxin</creatorcontrib><creatorcontrib>Lian, Pan</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in applied Clifford algebras</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenxin</au><au>Lian, Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Fourier Transform Associated to the k-Hyperbolic Dirac Operator</atitle><jtitle>Advances in applied Clifford algebras</jtitle><stitle>Adv. Appl. Clifford Algebras</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>33</volume><issue>3</issue><artnum>26</artnum><issn>0188-7009</issn><eissn>1661-4909</eissn><abstract>The polynomial null solutions of the
k
-hyperbolic Dirac operator are investigated by the
osp
(
1
|
2
)
approach. These solutions are then utilized to construct the (fractional) Fourier transform associated to the
k
-hyperbolic Dirac operator. The resulting integral kernels are found to be a specific kind of Dunkl kernels. Additionally, we give tight uncertainty inequalities for three distinct fractional Fourier transforms that we have defined. These inequalities are new even for the ordinary fractional Hankel and Weinstein transforms.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00006-023-01274-y</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0188-7009 |
ispartof | Advances in applied Clifford algebras, 2023-07, Vol.33 (3), Article 26 |
issn | 0188-7009 1661-4909 |
language | eng |
recordid | cdi_proquest_journals_2809101570 |
source | Springer Link |
subjects | Applications of Mathematics Fourier transforms Inequalities Kernels Mathematical and Computational Physics Mathematical Methods in Physics Physics Physics and Astronomy Polynomials Theoretical |
title | The Fourier Transform Associated to the k-Hyperbolic Dirac Operator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Fourier%20Transform%20Associated%20to%20the%20k-Hyperbolic%20Dirac%20Operator&rft.jtitle=Advances%20in%20applied%20Clifford%20algebras&rft.au=Li,%20Wenxin&rft.date=2023-07-01&rft.volume=33&rft.issue=3&rft.artnum=26&rft.issn=0188-7009&rft.eissn=1661-4909&rft_id=info:doi/10.1007/s00006-023-01274-y&rft_dat=%3Cproquest_cross%3E2809101570%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-73772043716bd981686530f7306fa14ad4b93cd063ea8af92ee4083b1deed5433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2809101570&rft_id=info:pmid/&rfr_iscdi=true |