Loading…

New class of high‐entropy rare‐earth niobates with high thermal expansion and oxygen insulation

Tailoring the structure and properties of materials using the high‐entropy (HE) effect is of significant interest in the fields of environmental and thermal barrier coatings (TBCs). In this work, a new class of dense HE rare‐earth niobates was successfully prepared by a solid‐phase reaction method,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2023-07, Vol.106 (7), p.4343-4357
Main Authors: Lai, Liping, Gan, Mengdi, Wang, Jun, Chen, Lin, Liang, Xiubing, Feng, Jing, Chong, XiaoYu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3017-8e1fdd2249b224133b0c692b735b9ae8f29b86e4d02feefef8a018fd3928b7e93
cites cdi_FETCH-LOGICAL-c3017-8e1fdd2249b224133b0c692b735b9ae8f29b86e4d02feefef8a018fd3928b7e93
container_end_page 4357
container_issue 7
container_start_page 4343
container_title Journal of the American Ceramic Society
container_volume 106
creator Lai, Liping
Gan, Mengdi
Wang, Jun
Chen, Lin
Liang, Xiubing
Feng, Jing
Chong, XiaoYu
description Tailoring the structure and properties of materials using the high‐entropy (HE) effect is of significant interest in the fields of environmental and thermal barrier coatings (TBCs). In this work, a new class of dense HE rare‐earth niobates was successfully prepared by a solid‐phase reaction method, including (Sm1/5Dy1/5Ho1/5Er1/5Yb1/5)NbO4 (5HERN), (Sm1/6Dy1/6Ho1/6Er1/6Yb1/6Lu1/6)NbO4 (6HERN), (Sm1/7Dy1/7Ho1/7Er1/7Yb1/7Lu1/7Gd1/7)NbO4 (7HERN), and (Sm1/8Dy1/8Ho1/8Er1/8Yb1/8Lu1/8Gd1/8Tm1/8)NbO4 (8HERN), along with eight single rare‐earth niobates (RENbO4, RE = Sm, Dy, Ho, Er, Yb, Lu, Gd, and Tm). X‐ray diffraction analysis showed that 5–8HERN are single‐phase solid solutions with a monoclinic structure (space group C12/c1). The thermal expansion coefficients of 7HERN and 8HERN exceed 11 × 10−6 K−1 at 1200°C and are much higher than those of the RENbO4 compositions (10.13–10.74 × 10−6 K−1) and other some HE rare‐earth oxides (10.27–10.87 × 10−6 K−1). Importantly, 5–8HERN have lower oxygen‐ion conductivity and higher activation energy than yttrium‐stabilized zirconia (YSZ) and the RENbO4 compositions. The oxygen‐ion conductivity of 5HERN (7.52 × 10−7 S cm−1, 900°C) was 105 times lower than that of YSZ (0.01 S cm−1, 750°C). The hardness of 5–8HERN is ∼7.81–8.46 GPa and these compositions have low intrinsic lattice thermal conductivity at high temperature (1.28–1.69 W m−1 K−1 at 900°C). The mechanism by which the HE effect improved the material properties was elucidated. Young's modulus, hardness, thermal expansion coefficient, and intrinsic lattice thermal conductivity are linearly related to the mass, size, and distortion degree of samples. In contrast, the oxygen‐ion conductivity depends on both the degrees of disorder and distortion and the oxygen‐ion vacancy concentration. Based on their overall performance, especially their high thermal expansion coefficients and excellent oxygen‐barrier performance, HE rare‐earth niobates show potential for further development as TBC materials.
doi_str_mv 10.1111/jace.19077
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2809436751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809436751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3017-8e1fdd2249b224133b0c692b735b9ae8f29b86e4d02feefef8a018fd3928b7e93</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSW2CGl2M6fvayq8qcKNrC2nGTcpErtYqdqs-MInJGT4BDWzGJGb_TNG-khdE3JjIa626gSZlSQPD9BE5qmNGKCZqdoQghhUc4ZOUcX3m-CpIInE1S-wAGXrfIeW43rZl1_f36B6Zzd9dgpB4NUrquxaWyhOvD40AQ1kLirwW1Vi-G4U8Y31mBlKmyP_RoMbozft6oL20t0plXr4epvTtH7_fJt8RitXh-eFvNVVMaE5hEHqquKsUQUodE4LkiZCVbkcVoIBVwzUfAMkoowDaBBc0Uo11UsGC9yEPEU3Yy-O2c_9uA7ubF7Z8JLyTgRSZzlKQ3U7UiVznrvQMuda7bK9ZISOYQohxDlb4gBpiN8aFro_yHl83yxHG9-AAYkd4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809436751</pqid></control><display><type>article</type><title>New class of high‐entropy rare‐earth niobates with high thermal expansion and oxygen insulation</title><source>Wiley</source><creator>Lai, Liping ; Gan, Mengdi ; Wang, Jun ; Chen, Lin ; Liang, Xiubing ; Feng, Jing ; Chong, XiaoYu</creator><creatorcontrib>Lai, Liping ; Gan, Mengdi ; Wang, Jun ; Chen, Lin ; Liang, Xiubing ; Feng, Jing ; Chong, XiaoYu</creatorcontrib><description>Tailoring the structure and properties of materials using the high‐entropy (HE) effect is of significant interest in the fields of environmental and thermal barrier coatings (TBCs). In this work, a new class of dense HE rare‐earth niobates was successfully prepared by a solid‐phase reaction method, including (Sm1/5Dy1/5Ho1/5Er1/5Yb1/5)NbO4 (5HERN), (Sm1/6Dy1/6Ho1/6Er1/6Yb1/6Lu1/6)NbO4 (6HERN), (Sm1/7Dy1/7Ho1/7Er1/7Yb1/7Lu1/7Gd1/7)NbO4 (7HERN), and (Sm1/8Dy1/8Ho1/8Er1/8Yb1/8Lu1/8Gd1/8Tm1/8)NbO4 (8HERN), along with eight single rare‐earth niobates (RENbO4, RE = Sm, Dy, Ho, Er, Yb, Lu, Gd, and Tm). X‐ray diffraction analysis showed that 5–8HERN are single‐phase solid solutions with a monoclinic structure (space group C12/c1). The thermal expansion coefficients of 7HERN and 8HERN exceed 11 × 10−6 K−1 at 1200°C and are much higher than those of the RENbO4 compositions (10.13–10.74 × 10−6 K−1) and other some HE rare‐earth oxides (10.27–10.87 × 10−6 K−1). Importantly, 5–8HERN have lower oxygen‐ion conductivity and higher activation energy than yttrium‐stabilized zirconia (YSZ) and the RENbO4 compositions. The oxygen‐ion conductivity of 5HERN (7.52 × 10−7 S cm−1, 900°C) was 105 times lower than that of YSZ (0.01 S cm−1, 750°C). The hardness of 5–8HERN is ∼7.81–8.46 GPa and these compositions have low intrinsic lattice thermal conductivity at high temperature (1.28–1.69 W m−1 K−1 at 900°C). The mechanism by which the HE effect improved the material properties was elucidated. Young's modulus, hardness, thermal expansion coefficient, and intrinsic lattice thermal conductivity are linearly related to the mass, size, and distortion degree of samples. In contrast, the oxygen‐ion conductivity depends on both the degrees of disorder and distortion and the oxygen‐ion vacancy concentration. Based on their overall performance, especially their high thermal expansion coefficients and excellent oxygen‐barrier performance, HE rare‐earth niobates show potential for further development as TBC materials.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.19077</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Composition ; Distortion ; Earth ; Entropy ; Erbium ; Gadolinium ; Hardness ; Heat conductivity ; Heat transfer ; High temperature ; high‐entropy ceramics ; Material properties ; Modulus of elasticity ; Niobates ; Oxygen ; oxygen insulation ; rare‐earth niobates ; Solid solutions ; Thermal barrier coatings ; Thermal conductivity ; Thermal expansion ; Ytterbium ; Yttria-stabilized zirconia ; Yttrium ; Zirconium dioxide</subject><ispartof>Journal of the American Ceramic Society, 2023-07, Vol.106 (7), p.4343-4357</ispartof><rights>2023 The American Ceramic Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3017-8e1fdd2249b224133b0c692b735b9ae8f29b86e4d02feefef8a018fd3928b7e93</citedby><cites>FETCH-LOGICAL-c3017-8e1fdd2249b224133b0c692b735b9ae8f29b86e4d02feefef8a018fd3928b7e93</cites><orcidid>0000-0002-4730-2845 ; 0000-0002-9671-6841 ; 0000-0001-6594-3913 ; 0000-0003-2720-4073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lai, Liping</creatorcontrib><creatorcontrib>Gan, Mengdi</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Liang, Xiubing</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><creatorcontrib>Chong, XiaoYu</creatorcontrib><title>New class of high‐entropy rare‐earth niobates with high thermal expansion and oxygen insulation</title><title>Journal of the American Ceramic Society</title><description>Tailoring the structure and properties of materials using the high‐entropy (HE) effect is of significant interest in the fields of environmental and thermal barrier coatings (TBCs). In this work, a new class of dense HE rare‐earth niobates was successfully prepared by a solid‐phase reaction method, including (Sm1/5Dy1/5Ho1/5Er1/5Yb1/5)NbO4 (5HERN), (Sm1/6Dy1/6Ho1/6Er1/6Yb1/6Lu1/6)NbO4 (6HERN), (Sm1/7Dy1/7Ho1/7Er1/7Yb1/7Lu1/7Gd1/7)NbO4 (7HERN), and (Sm1/8Dy1/8Ho1/8Er1/8Yb1/8Lu1/8Gd1/8Tm1/8)NbO4 (8HERN), along with eight single rare‐earth niobates (RENbO4, RE = Sm, Dy, Ho, Er, Yb, Lu, Gd, and Tm). X‐ray diffraction analysis showed that 5–8HERN are single‐phase solid solutions with a monoclinic structure (space group C12/c1). The thermal expansion coefficients of 7HERN and 8HERN exceed 11 × 10−6 K−1 at 1200°C and are much higher than those of the RENbO4 compositions (10.13–10.74 × 10−6 K−1) and other some HE rare‐earth oxides (10.27–10.87 × 10−6 K−1). Importantly, 5–8HERN have lower oxygen‐ion conductivity and higher activation energy than yttrium‐stabilized zirconia (YSZ) and the RENbO4 compositions. The oxygen‐ion conductivity of 5HERN (7.52 × 10−7 S cm−1, 900°C) was 105 times lower than that of YSZ (0.01 S cm−1, 750°C). The hardness of 5–8HERN is ∼7.81–8.46 GPa and these compositions have low intrinsic lattice thermal conductivity at high temperature (1.28–1.69 W m−1 K−1 at 900°C). The mechanism by which the HE effect improved the material properties was elucidated. Young's modulus, hardness, thermal expansion coefficient, and intrinsic lattice thermal conductivity are linearly related to the mass, size, and distortion degree of samples. In contrast, the oxygen‐ion conductivity depends on both the degrees of disorder and distortion and the oxygen‐ion vacancy concentration. Based on their overall performance, especially their high thermal expansion coefficients and excellent oxygen‐barrier performance, HE rare‐earth niobates show potential for further development as TBC materials.</description><subject>Composition</subject><subject>Distortion</subject><subject>Earth</subject><subject>Entropy</subject><subject>Erbium</subject><subject>Gadolinium</subject><subject>Hardness</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>high‐entropy ceramics</subject><subject>Material properties</subject><subject>Modulus of elasticity</subject><subject>Niobates</subject><subject>Oxygen</subject><subject>oxygen insulation</subject><subject>rare‐earth niobates</subject><subject>Solid solutions</subject><subject>Thermal barrier coatings</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><subject>Ytterbium</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium</subject><subject>Zirconium dioxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4QSW2CGl2M6fvayq8qcKNrC2nGTcpErtYqdqs-MInJGT4BDWzGJGb_TNG-khdE3JjIa626gSZlSQPD9BE5qmNGKCZqdoQghhUc4ZOUcX3m-CpIInE1S-wAGXrfIeW43rZl1_f36B6Zzd9dgpB4NUrquxaWyhOvD40AQ1kLirwW1Vi-G4U8Y31mBlKmyP_RoMbozft6oL20t0plXr4epvTtH7_fJt8RitXh-eFvNVVMaE5hEHqquKsUQUodE4LkiZCVbkcVoIBVwzUfAMkoowDaBBc0Uo11UsGC9yEPEU3Yy-O2c_9uA7ubF7Z8JLyTgRSZzlKQ3U7UiVznrvQMuda7bK9ZISOYQohxDlb4gBpiN8aFro_yHl83yxHG9-AAYkd4M</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Lai, Liping</creator><creator>Gan, Mengdi</creator><creator>Wang, Jun</creator><creator>Chen, Lin</creator><creator>Liang, Xiubing</creator><creator>Feng, Jing</creator><creator>Chong, XiaoYu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4730-2845</orcidid><orcidid>https://orcid.org/0000-0002-9671-6841</orcidid><orcidid>https://orcid.org/0000-0001-6594-3913</orcidid><orcidid>https://orcid.org/0000-0003-2720-4073</orcidid></search><sort><creationdate>202307</creationdate><title>New class of high‐entropy rare‐earth niobates with high thermal expansion and oxygen insulation</title><author>Lai, Liping ; Gan, Mengdi ; Wang, Jun ; Chen, Lin ; Liang, Xiubing ; Feng, Jing ; Chong, XiaoYu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3017-8e1fdd2249b224133b0c692b735b9ae8f29b86e4d02feefef8a018fd3928b7e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composition</topic><topic>Distortion</topic><topic>Earth</topic><topic>Entropy</topic><topic>Erbium</topic><topic>Gadolinium</topic><topic>Hardness</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>high‐entropy ceramics</topic><topic>Material properties</topic><topic>Modulus of elasticity</topic><topic>Niobates</topic><topic>Oxygen</topic><topic>oxygen insulation</topic><topic>rare‐earth niobates</topic><topic>Solid solutions</topic><topic>Thermal barrier coatings</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><topic>Ytterbium</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Liping</creatorcontrib><creatorcontrib>Gan, Mengdi</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Liang, Xiubing</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><creatorcontrib>Chong, XiaoYu</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Liping</au><au>Gan, Mengdi</au><au>Wang, Jun</au><au>Chen, Lin</au><au>Liang, Xiubing</au><au>Feng, Jing</au><au>Chong, XiaoYu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New class of high‐entropy rare‐earth niobates with high thermal expansion and oxygen insulation</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2023-07</date><risdate>2023</risdate><volume>106</volume><issue>7</issue><spage>4343</spage><epage>4357</epage><pages>4343-4357</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Tailoring the structure and properties of materials using the high‐entropy (HE) effect is of significant interest in the fields of environmental and thermal barrier coatings (TBCs). In this work, a new class of dense HE rare‐earth niobates was successfully prepared by a solid‐phase reaction method, including (Sm1/5Dy1/5Ho1/5Er1/5Yb1/5)NbO4 (5HERN), (Sm1/6Dy1/6Ho1/6Er1/6Yb1/6Lu1/6)NbO4 (6HERN), (Sm1/7Dy1/7Ho1/7Er1/7Yb1/7Lu1/7Gd1/7)NbO4 (7HERN), and (Sm1/8Dy1/8Ho1/8Er1/8Yb1/8Lu1/8Gd1/8Tm1/8)NbO4 (8HERN), along with eight single rare‐earth niobates (RENbO4, RE = Sm, Dy, Ho, Er, Yb, Lu, Gd, and Tm). X‐ray diffraction analysis showed that 5–8HERN are single‐phase solid solutions with a monoclinic structure (space group C12/c1). The thermal expansion coefficients of 7HERN and 8HERN exceed 11 × 10−6 K−1 at 1200°C and are much higher than those of the RENbO4 compositions (10.13–10.74 × 10−6 K−1) and other some HE rare‐earth oxides (10.27–10.87 × 10−6 K−1). Importantly, 5–8HERN have lower oxygen‐ion conductivity and higher activation energy than yttrium‐stabilized zirconia (YSZ) and the RENbO4 compositions. The oxygen‐ion conductivity of 5HERN (7.52 × 10−7 S cm−1, 900°C) was 105 times lower than that of YSZ (0.01 S cm−1, 750°C). The hardness of 5–8HERN is ∼7.81–8.46 GPa and these compositions have low intrinsic lattice thermal conductivity at high temperature (1.28–1.69 W m−1 K−1 at 900°C). The mechanism by which the HE effect improved the material properties was elucidated. Young's modulus, hardness, thermal expansion coefficient, and intrinsic lattice thermal conductivity are linearly related to the mass, size, and distortion degree of samples. In contrast, the oxygen‐ion conductivity depends on both the degrees of disorder and distortion and the oxygen‐ion vacancy concentration. Based on their overall performance, especially their high thermal expansion coefficients and excellent oxygen‐barrier performance, HE rare‐earth niobates show potential for further development as TBC materials.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.19077</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4730-2845</orcidid><orcidid>https://orcid.org/0000-0002-9671-6841</orcidid><orcidid>https://orcid.org/0000-0001-6594-3913</orcidid><orcidid>https://orcid.org/0000-0003-2720-4073</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2023-07, Vol.106 (7), p.4343-4357
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2809436751
source Wiley
subjects Composition
Distortion
Earth
Entropy
Erbium
Gadolinium
Hardness
Heat conductivity
Heat transfer
High temperature
high‐entropy ceramics
Material properties
Modulus of elasticity
Niobates
Oxygen
oxygen insulation
rare‐earth niobates
Solid solutions
Thermal barrier coatings
Thermal conductivity
Thermal expansion
Ytterbium
Yttria-stabilized zirconia
Yttrium
Zirconium dioxide
title New class of high‐entropy rare‐earth niobates with high thermal expansion and oxygen insulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20class%20of%20high%E2%80%90entropy%20rare%E2%80%90earth%20niobates%20with%20high%20thermal%20expansion%20and%20oxygen%20insulation&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Lai,%20Liping&rft.date=2023-07&rft.volume=106&rft.issue=7&rft.spage=4343&rft.epage=4357&rft.pages=4343-4357&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.19077&rft_dat=%3Cproquest_cross%3E2809436751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3017-8e1fdd2249b224133b0c692b735b9ae8f29b86e4d02feefef8a018fd3928b7e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2809436751&rft_id=info:pmid/&rfr_iscdi=true