Loading…

Study on the Effect of Current Density on Electrolysis State in a 6kA Praseodymium Electrolyzer

Current density is an important index parameter to study the state of rare earth electrolysis, and the lack of simulation modelling of current density in the electrolyzer in the actual process production chain affects the quality of products and the improvement of electrolytic current efficiency. Co...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2023-05, Vol.2483 (1), p.12010
Main Authors: Gao, Peng, Li, Zhifeng, Gao, Ming, Cai, Jianuo, Tao, Like
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current density is an important index parameter to study the state of rare earth electrolysis, and the lack of simulation modelling of current density in the electrolyzer in the actual process production chain affects the quality of products and the improvement of electrolytic current efficiency. Considering the process parameters in the electrolysis process, the simulation model of the 6kA praseodymium electrolyzer was constructed by using the numerical simulation software COMSOL to improve the electrolysis current efficiency and reduce the electrolysis power consumption. The simulation analysis of the electrolysis process was realized by using the coupled electric-thermal field simulation. The simulation results verified the accuracy of the coupling theory and combined it with the coupling simulation study and verification experiments. It was concluded that the electrolysis environment in the tank was ideal when the cathode current density was in the range of 5.72 A/cm 2 ~6.80 A/cm 2 . The ratio of anode current density to cathode current density was in the range of 1.37~1.62, the current efficiency was higher than 75%, and the electrolysis power consumption was lower than 200 kW·h·kg −1 . The electrolysis efficiency is good.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2483/1/012010