Loading…

Hybrid quantum learning with data re-uploading on a small-scale superconducting quantum simulator

Supervised quantum learning is an emergent multidisciplinary domain bridging between variational quantum algorithms and classical machine learning. Here, we study experimentally a hybrid classifier model accelerated by a quantum simulator - a linear array of four superconducting transmon artificial...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-01
Main Authors: Tolstobrov, Aleksei, Fedorov, Gleb, Sanduleanu, Shtefan, Kadyrmetov, Shamil, Vasenin, Andrei, Bolgar, Aleksey, Kalacheva, Daria, Lubsanov, Viktor, Dorogov, Aleksandr, Zotova, Julia, Shlykov, Peter, Dmitriev, Aleksei, Tikhonov, Konstantin, Astafiev, Oleg V
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tolstobrov, Aleksei
Fedorov, Gleb
Sanduleanu, Shtefan
Kadyrmetov, Shamil
Vasenin, Andrei
Bolgar, Aleksey
Kalacheva, Daria
Lubsanov, Viktor
Dorogov, Aleksandr
Zotova, Julia
Shlykov, Peter
Dmitriev, Aleksei
Tikhonov, Konstantin
Astafiev, Oleg V
description Supervised quantum learning is an emergent multidisciplinary domain bridging between variational quantum algorithms and classical machine learning. Here, we study experimentally a hybrid classifier model accelerated by a quantum simulator - a linear array of four superconducting transmon artificial atoms - trained to solve multilabel classification and image recognition problems. We train a quantum circuit on simple binary and multi-label tasks, achieving classification accuracy around 95%, and a hybrid model with data re-uploading with accuracy around 90% when recognizing handwritten decimal digits. Finally, we analyze the inference time in experimental conditions and compare the performance of the studied quantum model with known classical solutions.
doi_str_mv 10.48550/arxiv.2305.02956
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2809961935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809961935</sourcerecordid><originalsourceid>FETCH-LOGICAL-a956-ef71a70bff087f048c043366874255c6a8f267e4ef5a42eac756abc0353940ee3</originalsourceid><addsrcrecordid>eNo1jktLAzEUhYMgWGp_gLuA66l38p6lFLVCwU335U4m0SmZR5OJj3_vFOvqwOHwnY-QuxLWwkgJDxi_28814yDXwCqprsiCcV4WRjB2Q1YpHQGAKc2k5AuC2586tg09Zeyn3NHgMPZt_06_2umDNjghja7IYxiwOddDT5GmDkMoksXgaMqji3bom2yn8-AflNouB5yGeEuuPYbkVpdckv3z036zLXZvL6-bx12Bs2ThvC5RQ-09GO1BGAuCc6WMFrOoVWj87OyE8xIFc2i1VFhb4JJXApzjS3L_hx3jcMouTYfjkGM_Px6YgapSZTVvfwEb6Vez</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809961935</pqid></control><display><type>article</type><title>Hybrid quantum learning with data re-uploading on a small-scale superconducting quantum simulator</title><source>Publicly Available Content Database</source><creator>Tolstobrov, Aleksei ; Fedorov, Gleb ; Sanduleanu, Shtefan ; Kadyrmetov, Shamil ; Vasenin, Andrei ; Bolgar, Aleksey ; Kalacheva, Daria ; Lubsanov, Viktor ; Dorogov, Aleksandr ; Zotova, Julia ; Shlykov, Peter ; Dmitriev, Aleksei ; Tikhonov, Konstantin ; Astafiev, Oleg V</creator><creatorcontrib>Tolstobrov, Aleksei ; Fedorov, Gleb ; Sanduleanu, Shtefan ; Kadyrmetov, Shamil ; Vasenin, Andrei ; Bolgar, Aleksey ; Kalacheva, Daria ; Lubsanov, Viktor ; Dorogov, Aleksandr ; Zotova, Julia ; Shlykov, Peter ; Dmitriev, Aleksei ; Tikhonov, Konstantin ; Astafiev, Oleg V</creatorcontrib><description>Supervised quantum learning is an emergent multidisciplinary domain bridging between variational quantum algorithms and classical machine learning. Here, we study experimentally a hybrid classifier model accelerated by a quantum simulator - a linear array of four superconducting transmon artificial atoms - trained to solve multilabel classification and image recognition problems. We train a quantum circuit on simple binary and multi-label tasks, achieving classification accuracy around 95%, and a hybrid model with data re-uploading with accuracy around 90% when recognizing handwritten decimal digits. Finally, we analyze the inference time in experimental conditions and compare the performance of the studied quantum model with known classical solutions.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2305.02956</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Circuits ; Handwriting recognition ; Image classification ; Linear arrays ; Machine learning ; Quantum dots ; Superconductivity</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2809961935?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Tolstobrov, Aleksei</creatorcontrib><creatorcontrib>Fedorov, Gleb</creatorcontrib><creatorcontrib>Sanduleanu, Shtefan</creatorcontrib><creatorcontrib>Kadyrmetov, Shamil</creatorcontrib><creatorcontrib>Vasenin, Andrei</creatorcontrib><creatorcontrib>Bolgar, Aleksey</creatorcontrib><creatorcontrib>Kalacheva, Daria</creatorcontrib><creatorcontrib>Lubsanov, Viktor</creatorcontrib><creatorcontrib>Dorogov, Aleksandr</creatorcontrib><creatorcontrib>Zotova, Julia</creatorcontrib><creatorcontrib>Shlykov, Peter</creatorcontrib><creatorcontrib>Dmitriev, Aleksei</creatorcontrib><creatorcontrib>Tikhonov, Konstantin</creatorcontrib><creatorcontrib>Astafiev, Oleg V</creatorcontrib><title>Hybrid quantum learning with data re-uploading on a small-scale superconducting quantum simulator</title><title>arXiv.org</title><description>Supervised quantum learning is an emergent multidisciplinary domain bridging between variational quantum algorithms and classical machine learning. Here, we study experimentally a hybrid classifier model accelerated by a quantum simulator - a linear array of four superconducting transmon artificial atoms - trained to solve multilabel classification and image recognition problems. We train a quantum circuit on simple binary and multi-label tasks, achieving classification accuracy around 95%, and a hybrid model with data re-uploading with accuracy around 90% when recognizing handwritten decimal digits. Finally, we analyze the inference time in experimental conditions and compare the performance of the studied quantum model with known classical solutions.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Handwriting recognition</subject><subject>Image classification</subject><subject>Linear arrays</subject><subject>Machine learning</subject><subject>Quantum dots</subject><subject>Superconductivity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo1jktLAzEUhYMgWGp_gLuA66l38p6lFLVCwU335U4m0SmZR5OJj3_vFOvqwOHwnY-QuxLWwkgJDxi_28814yDXwCqprsiCcV4WRjB2Q1YpHQGAKc2k5AuC2586tg09Zeyn3NHgMPZt_06_2umDNjghja7IYxiwOddDT5GmDkMoksXgaMqji3bom2yn8-AflNouB5yGeEuuPYbkVpdckv3z036zLXZvL6-bx12Bs2ThvC5RQ-09GO1BGAuCc6WMFrOoVWj87OyE8xIFc2i1VFhb4JJXApzjS3L_hx3jcMouTYfjkGM_Px6YgapSZTVvfwEb6Vez</recordid><startdate>20240110</startdate><enddate>20240110</enddate><creator>Tolstobrov, Aleksei</creator><creator>Fedorov, Gleb</creator><creator>Sanduleanu, Shtefan</creator><creator>Kadyrmetov, Shamil</creator><creator>Vasenin, Andrei</creator><creator>Bolgar, Aleksey</creator><creator>Kalacheva, Daria</creator><creator>Lubsanov, Viktor</creator><creator>Dorogov, Aleksandr</creator><creator>Zotova, Julia</creator><creator>Shlykov, Peter</creator><creator>Dmitriev, Aleksei</creator><creator>Tikhonov, Konstantin</creator><creator>Astafiev, Oleg V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240110</creationdate><title>Hybrid quantum learning with data re-uploading on a small-scale superconducting quantum simulator</title><author>Tolstobrov, Aleksei ; Fedorov, Gleb ; Sanduleanu, Shtefan ; Kadyrmetov, Shamil ; Vasenin, Andrei ; Bolgar, Aleksey ; Kalacheva, Daria ; Lubsanov, Viktor ; Dorogov, Aleksandr ; Zotova, Julia ; Shlykov, Peter ; Dmitriev, Aleksei ; Tikhonov, Konstantin ; Astafiev, Oleg V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a956-ef71a70bff087f048c043366874255c6a8f267e4ef5a42eac756abc0353940ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Handwriting recognition</topic><topic>Image classification</topic><topic>Linear arrays</topic><topic>Machine learning</topic><topic>Quantum dots</topic><topic>Superconductivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Tolstobrov, Aleksei</creatorcontrib><creatorcontrib>Fedorov, Gleb</creatorcontrib><creatorcontrib>Sanduleanu, Shtefan</creatorcontrib><creatorcontrib>Kadyrmetov, Shamil</creatorcontrib><creatorcontrib>Vasenin, Andrei</creatorcontrib><creatorcontrib>Bolgar, Aleksey</creatorcontrib><creatorcontrib>Kalacheva, Daria</creatorcontrib><creatorcontrib>Lubsanov, Viktor</creatorcontrib><creatorcontrib>Dorogov, Aleksandr</creatorcontrib><creatorcontrib>Zotova, Julia</creatorcontrib><creatorcontrib>Shlykov, Peter</creatorcontrib><creatorcontrib>Dmitriev, Aleksei</creatorcontrib><creatorcontrib>Tikhonov, Konstantin</creatorcontrib><creatorcontrib>Astafiev, Oleg V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tolstobrov, Aleksei</au><au>Fedorov, Gleb</au><au>Sanduleanu, Shtefan</au><au>Kadyrmetov, Shamil</au><au>Vasenin, Andrei</au><au>Bolgar, Aleksey</au><au>Kalacheva, Daria</au><au>Lubsanov, Viktor</au><au>Dorogov, Aleksandr</au><au>Zotova, Julia</au><au>Shlykov, Peter</au><au>Dmitriev, Aleksei</au><au>Tikhonov, Konstantin</au><au>Astafiev, Oleg V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid quantum learning with data re-uploading on a small-scale superconducting quantum simulator</atitle><jtitle>arXiv.org</jtitle><date>2024-01-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Supervised quantum learning is an emergent multidisciplinary domain bridging between variational quantum algorithms and classical machine learning. Here, we study experimentally a hybrid classifier model accelerated by a quantum simulator - a linear array of four superconducting transmon artificial atoms - trained to solve multilabel classification and image recognition problems. We train a quantum circuit on simple binary and multi-label tasks, achieving classification accuracy around 95%, and a hybrid model with data re-uploading with accuracy around 90% when recognizing handwritten decimal digits. Finally, we analyze the inference time in experimental conditions and compare the performance of the studied quantum model with known classical solutions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2305.02956</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2809961935
source Publicly Available Content Database
subjects Algorithms
Circuits
Handwriting recognition
Image classification
Linear arrays
Machine learning
Quantum dots
Superconductivity
title Hybrid quantum learning with data re-uploading on a small-scale superconducting quantum simulator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20quantum%20learning%20with%20data%20re-uploading%20on%20a%20small-scale%20superconducting%20quantum%20simulator&rft.jtitle=arXiv.org&rft.au=Tolstobrov,%20Aleksei&rft.date=2024-01-10&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2305.02956&rft_dat=%3Cproquest%3E2809961935%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a956-ef71a70bff087f048c043366874255c6a8f267e4ef5a42eac756abc0353940ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2809961935&rft_id=info:pmid/&rfr_iscdi=true