Loading…

Local2Global: a distributed approach for scaling representation learning on graphs

We propose a decentralised “ local2global ” approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our local2global approach proceeds by first dividing the input graph into overlapping subgraphs (or “ patches ”) and training local representations for e...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning 2023-05, Vol.112 (5), p.1663-1692
Main Authors: Jeub, Lucas G. S., Colavizza, Giovanni, Dong, Xiaowen, Bazzi, Marya, Cucuringu, Mihai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-9e638cc4081444cf192c27b291f032ab162b8998b4b6e95051e19ca9b412a8623
container_end_page 1692
container_issue 5
container_start_page 1663
container_title Machine learning
container_volume 112
creator Jeub, Lucas G. S.
Colavizza, Giovanni
Dong, Xiaowen
Bazzi, Marya
Cucuringu, Mihai
description We propose a decentralised “ local2global ” approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our local2global approach proceeds by first dividing the input graph into overlapping subgraphs (or “ patches ”) and training local representations for each patch independently. In a second step, we combine the local representations into a globally consistent representation by estimating the set of rigid motions that best align the local representations using information from the patch overlaps, via group synchronization. A key distinguishing feature of local2global relative to existing work is that patches are trained independently without the need for the often costly parameter synchronization during distributed training. This allows local2global to scale to large-scale industrial applications, where the input graph may not even fit into memory and may be stored in a distributed manner. We apply local2global on data sets of different sizes and show that our approach achieves a good trade-off between scale and accuracy on edge reconstruction and semi-supervised classification. We also consider the downstream task of anomaly detection and show how one can use local2global to highlight anomalies in cybersecurity networks.
doi_str_mv 10.1007/s10994-022-06285-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2809964176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809964176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-9e638cc4081444cf192c27b291f032ab162b8998b4b6e95051e19ca9b412a8623</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9WZaZom3mTRVVgQRM8hyaa7XWpbk-7Bf292K3jzNMPjvTfDx9g1wi0CVHcRQSmeA1EOgmSZVydshmVV5FCK8pTNQCZRIJXn7CLGHQCQkGLG3la9My0t296a9j4z2bqJY2jsfvTrzAxD6I3bZnUfsph8TbfJgh-Cj74bzdj0XdZ6E7qDnvZNMMM2XrKz2rTRX_3OOft4enxfPOer1-XL4mGVuwL5mCsvCukcB4mcc1ejIkeVJYU1FGQsCrJSKWm5FV6VUKJH5YyyHMlIQcWc3Uy96cmvvY-j3vX70KWTmmTCIThWIrlocrnQxxh8rYfQfJrwrRH0gZ2e2OnETh_Z6SqFiikUk7nb-PBX_U_qB7KqcRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809964176</pqid></control><display><type>article</type><title>Local2Global: a distributed approach for scaling representation learning on graphs</title><source>Springer Nature</source><creator>Jeub, Lucas G. S. ; Colavizza, Giovanni ; Dong, Xiaowen ; Bazzi, Marya ; Cucuringu, Mihai</creator><creatorcontrib>Jeub, Lucas G. S. ; Colavizza, Giovanni ; Dong, Xiaowen ; Bazzi, Marya ; Cucuringu, Mihai</creatorcontrib><description>We propose a decentralised “ local2global ” approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our local2global approach proceeds by first dividing the input graph into overlapping subgraphs (or “ patches ”) and training local representations for each patch independently. In a second step, we combine the local representations into a globally consistent representation by estimating the set of rigid motions that best align the local representations using information from the patch overlaps, via group synchronization. A key distinguishing feature of local2global relative to existing work is that patches are trained independently without the need for the often costly parameter synchronization during distributed training. This allows local2global to scale to large-scale industrial applications, where the input graph may not even fit into memory and may be stored in a distributed manner. We apply local2global on data sets of different sizes and show that our approach achieves a good trade-off between scale and accuracy on edge reconstruction and semi-supervised classification. We also consider the downstream task of anomaly detection and show how one can use local2global to highlight anomalies in cybersecurity networks.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-022-06285-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anomalies ; Artificial Intelligence ; Computer Science ; Control ; Cybersecurity ; Graph representations ; Graph theory ; Graphical representations ; Industrial applications ; Learning ; Machine Learning ; Mechatronics ; Natural Language Processing (NLP) ; Robotics ; Simulation and Modeling ; Synchronism ; Training</subject><ispartof>Machine learning, 2023-05, Vol.112 (5), p.1663-1692</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-9e638cc4081444cf192c27b291f032ab162b8998b4b6e95051e19ca9b412a8623</cites><orcidid>0000-0001-8941-9227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jeub, Lucas G. S.</creatorcontrib><creatorcontrib>Colavizza, Giovanni</creatorcontrib><creatorcontrib>Dong, Xiaowen</creatorcontrib><creatorcontrib>Bazzi, Marya</creatorcontrib><creatorcontrib>Cucuringu, Mihai</creatorcontrib><title>Local2Global: a distributed approach for scaling representation learning on graphs</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>We propose a decentralised “ local2global ” approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our local2global approach proceeds by first dividing the input graph into overlapping subgraphs (or “ patches ”) and training local representations for each patch independently. In a second step, we combine the local representations into a globally consistent representation by estimating the set of rigid motions that best align the local representations using information from the patch overlaps, via group synchronization. A key distinguishing feature of local2global relative to existing work is that patches are trained independently without the need for the often costly parameter synchronization during distributed training. This allows local2global to scale to large-scale industrial applications, where the input graph may not even fit into memory and may be stored in a distributed manner. We apply local2global on data sets of different sizes and show that our approach achieves a good trade-off between scale and accuracy on edge reconstruction and semi-supervised classification. We also consider the downstream task of anomaly detection and show how one can use local2global to highlight anomalies in cybersecurity networks.</description><subject>Anomalies</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Control</subject><subject>Cybersecurity</subject><subject>Graph representations</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Industrial applications</subject><subject>Learning</subject><subject>Machine Learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><subject>Synchronism</subject><subject>Training</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9WZaZom3mTRVVgQRM8hyaa7XWpbk-7Bf292K3jzNMPjvTfDx9g1wi0CVHcRQSmeA1EOgmSZVydshmVV5FCK8pTNQCZRIJXn7CLGHQCQkGLG3la9My0t296a9j4z2bqJY2jsfvTrzAxD6I3bZnUfsph8TbfJgh-Cj74bzdj0XdZ6E7qDnvZNMMM2XrKz2rTRX_3OOft4enxfPOer1-XL4mGVuwL5mCsvCukcB4mcc1ejIkeVJYU1FGQsCrJSKWm5FV6VUKJH5YyyHMlIQcWc3Uy96cmvvY-j3vX70KWTmmTCIThWIrlocrnQxxh8rYfQfJrwrRH0gZ2e2OnETh_Z6SqFiikUk7nb-PBX_U_qB7KqcRI</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Jeub, Lucas G. S.</creator><creator>Colavizza, Giovanni</creator><creator>Dong, Xiaowen</creator><creator>Bazzi, Marya</creator><creator>Cucuringu, Mihai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8941-9227</orcidid></search><sort><creationdate>20230501</creationdate><title>Local2Global: a distributed approach for scaling representation learning on graphs</title><author>Jeub, Lucas G. S. ; Colavizza, Giovanni ; Dong, Xiaowen ; Bazzi, Marya ; Cucuringu, Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-9e638cc4081444cf192c27b291f032ab162b8998b4b6e95051e19ca9b412a8623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Control</topic><topic>Cybersecurity</topic><topic>Graph representations</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Industrial applications</topic><topic>Learning</topic><topic>Machine Learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><topic>Synchronism</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeub, Lucas G. S.</creatorcontrib><creatorcontrib>Colavizza, Giovanni</creatorcontrib><creatorcontrib>Dong, Xiaowen</creatorcontrib><creatorcontrib>Bazzi, Marya</creatorcontrib><creatorcontrib>Cucuringu, Mihai</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeub, Lucas G. S.</au><au>Colavizza, Giovanni</au><au>Dong, Xiaowen</au><au>Bazzi, Marya</au><au>Cucuringu, Mihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local2Global: a distributed approach for scaling representation learning on graphs</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>112</volume><issue>5</issue><spage>1663</spage><epage>1692</epage><pages>1663-1692</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>We propose a decentralised “ local2global ” approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our local2global approach proceeds by first dividing the input graph into overlapping subgraphs (or “ patches ”) and training local representations for each patch independently. In a second step, we combine the local representations into a globally consistent representation by estimating the set of rigid motions that best align the local representations using information from the patch overlaps, via group synchronization. A key distinguishing feature of local2global relative to existing work is that patches are trained independently without the need for the often costly parameter synchronization during distributed training. This allows local2global to scale to large-scale industrial applications, where the input graph may not even fit into memory and may be stored in a distributed manner. We apply local2global on data sets of different sizes and show that our approach achieves a good trade-off between scale and accuracy on edge reconstruction and semi-supervised classification. We also consider the downstream task of anomaly detection and show how one can use local2global to highlight anomalies in cybersecurity networks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-022-06285-7</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-8941-9227</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2023-05, Vol.112 (5), p.1663-1692
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_journals_2809964176
source Springer Nature
subjects Anomalies
Artificial Intelligence
Computer Science
Control
Cybersecurity
Graph representations
Graph theory
Graphical representations
Industrial applications
Learning
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Robotics
Simulation and Modeling
Synchronism
Training
title Local2Global: a distributed approach for scaling representation learning on graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local2Global:%20a%20distributed%20approach%20for%20scaling%20representation%20learning%20on%20graphs&rft.jtitle=Machine%20learning&rft.au=Jeub,%20Lucas%20G.%20S.&rft.date=2023-05-01&rft.volume=112&rft.issue=5&rft.spage=1663&rft.epage=1692&rft.pages=1663-1692&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-022-06285-7&rft_dat=%3Cproquest_cross%3E2809964176%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-9e638cc4081444cf192c27b291f032ab162b8998b4b6e95051e19ca9b412a8623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2809964176&rft_id=info:pmid/&rfr_iscdi=true