Loading…
Local2Global: a distributed approach for scaling representation learning on graphs
We propose a decentralised “ local2global ” approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our local2global approach proceeds by first dividing the input graph into overlapping subgraphs (or “ patches ”) and training local representations for e...
Saved in:
Published in: | Machine learning 2023-05, Vol.112 (5), p.1663-1692 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-9e638cc4081444cf192c27b291f032ab162b8998b4b6e95051e19ca9b412a8623 |
container_end_page | 1692 |
container_issue | 5 |
container_start_page | 1663 |
container_title | Machine learning |
container_volume | 112 |
creator | Jeub, Lucas G. S. Colavizza, Giovanni Dong, Xiaowen Bazzi, Marya Cucuringu, Mihai |
description | We propose a decentralised “
local2global
” approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our
local2global
approach proceeds by first dividing the input graph into overlapping subgraphs (or “
patches
”) and training local representations for each patch independently. In a second step, we combine the local representations into a globally consistent representation by estimating the set of rigid motions that best align the local representations using information from the patch overlaps, via group synchronization. A key distinguishing feature of
local2global
relative to existing work is that patches are trained independently without the need for the often costly parameter synchronization during distributed training. This allows
local2global
to scale to large-scale industrial applications, where the input graph may not even fit into memory and may be stored in a distributed manner. We apply
local2global
on data sets of different sizes and show that our approach achieves a good trade-off between scale and accuracy on edge reconstruction and semi-supervised classification. We also consider the downstream task of anomaly detection and show how one can use
local2global
to highlight anomalies in cybersecurity networks. |
doi_str_mv | 10.1007/s10994-022-06285-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2809964176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809964176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-9e638cc4081444cf192c27b291f032ab162b8998b4b6e95051e19ca9b412a8623</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9WZaZom3mTRVVgQRM8hyaa7XWpbk-7Bf292K3jzNMPjvTfDx9g1wi0CVHcRQSmeA1EOgmSZVydshmVV5FCK8pTNQCZRIJXn7CLGHQCQkGLG3la9My0t296a9j4z2bqJY2jsfvTrzAxD6I3bZnUfsph8TbfJgh-Cj74bzdj0XdZ6E7qDnvZNMMM2XrKz2rTRX_3OOft4enxfPOer1-XL4mGVuwL5mCsvCukcB4mcc1ejIkeVJYU1FGQsCrJSKWm5FV6VUKJH5YyyHMlIQcWc3Uy96cmvvY-j3vX70KWTmmTCIThWIrlocrnQxxh8rYfQfJrwrRH0gZ2e2OnETh_Z6SqFiikUk7nb-PBX_U_qB7KqcRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809964176</pqid></control><display><type>article</type><title>Local2Global: a distributed approach for scaling representation learning on graphs</title><source>Springer Nature</source><creator>Jeub, Lucas G. S. ; Colavizza, Giovanni ; Dong, Xiaowen ; Bazzi, Marya ; Cucuringu, Mihai</creator><creatorcontrib>Jeub, Lucas G. S. ; Colavizza, Giovanni ; Dong, Xiaowen ; Bazzi, Marya ; Cucuringu, Mihai</creatorcontrib><description>We propose a decentralised “
local2global
” approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our
local2global
approach proceeds by first dividing the input graph into overlapping subgraphs (or “
patches
”) and training local representations for each patch independently. In a second step, we combine the local representations into a globally consistent representation by estimating the set of rigid motions that best align the local representations using information from the patch overlaps, via group synchronization. A key distinguishing feature of
local2global
relative to existing work is that patches are trained independently without the need for the often costly parameter synchronization during distributed training. This allows
local2global
to scale to large-scale industrial applications, where the input graph may not even fit into memory and may be stored in a distributed manner. We apply
local2global
on data sets of different sizes and show that our approach achieves a good trade-off between scale and accuracy on edge reconstruction and semi-supervised classification. We also consider the downstream task of anomaly detection and show how one can use
local2global
to highlight anomalies in cybersecurity networks.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-022-06285-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anomalies ; Artificial Intelligence ; Computer Science ; Control ; Cybersecurity ; Graph representations ; Graph theory ; Graphical representations ; Industrial applications ; Learning ; Machine Learning ; Mechatronics ; Natural Language Processing (NLP) ; Robotics ; Simulation and Modeling ; Synchronism ; Training</subject><ispartof>Machine learning, 2023-05, Vol.112 (5), p.1663-1692</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-9e638cc4081444cf192c27b291f032ab162b8998b4b6e95051e19ca9b412a8623</cites><orcidid>0000-0001-8941-9227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jeub, Lucas G. S.</creatorcontrib><creatorcontrib>Colavizza, Giovanni</creatorcontrib><creatorcontrib>Dong, Xiaowen</creatorcontrib><creatorcontrib>Bazzi, Marya</creatorcontrib><creatorcontrib>Cucuringu, Mihai</creatorcontrib><title>Local2Global: a distributed approach for scaling representation learning on graphs</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>We propose a decentralised “
local2global
” approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our
local2global
approach proceeds by first dividing the input graph into overlapping subgraphs (or “
patches
”) and training local representations for each patch independently. In a second step, we combine the local representations into a globally consistent representation by estimating the set of rigid motions that best align the local representations using information from the patch overlaps, via group synchronization. A key distinguishing feature of
local2global
relative to existing work is that patches are trained independently without the need for the often costly parameter synchronization during distributed training. This allows
local2global
to scale to large-scale industrial applications, where the input graph may not even fit into memory and may be stored in a distributed manner. We apply
local2global
on data sets of different sizes and show that our approach achieves a good trade-off between scale and accuracy on edge reconstruction and semi-supervised classification. We also consider the downstream task of anomaly detection and show how one can use
local2global
to highlight anomalies in cybersecurity networks.</description><subject>Anomalies</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Control</subject><subject>Cybersecurity</subject><subject>Graph representations</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Industrial applications</subject><subject>Learning</subject><subject>Machine Learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><subject>Synchronism</subject><subject>Training</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9WZaZom3mTRVVgQRM8hyaa7XWpbk-7Bf292K3jzNMPjvTfDx9g1wi0CVHcRQSmeA1EOgmSZVydshmVV5FCK8pTNQCZRIJXn7CLGHQCQkGLG3la9My0t296a9j4z2bqJY2jsfvTrzAxD6I3bZnUfsph8TbfJgh-Cj74bzdj0XdZ6E7qDnvZNMMM2XrKz2rTRX_3OOft4enxfPOer1-XL4mGVuwL5mCsvCukcB4mcc1ejIkeVJYU1FGQsCrJSKWm5FV6VUKJH5YyyHMlIQcWc3Uy96cmvvY-j3vX70KWTmmTCIThWIrlocrnQxxh8rYfQfJrwrRH0gZ2e2OnETh_Z6SqFiikUk7nb-PBX_U_qB7KqcRI</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Jeub, Lucas G. S.</creator><creator>Colavizza, Giovanni</creator><creator>Dong, Xiaowen</creator><creator>Bazzi, Marya</creator><creator>Cucuringu, Mihai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8941-9227</orcidid></search><sort><creationdate>20230501</creationdate><title>Local2Global: a distributed approach for scaling representation learning on graphs</title><author>Jeub, Lucas G. S. ; Colavizza, Giovanni ; Dong, Xiaowen ; Bazzi, Marya ; Cucuringu, Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-9e638cc4081444cf192c27b291f032ab162b8998b4b6e95051e19ca9b412a8623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Control</topic><topic>Cybersecurity</topic><topic>Graph representations</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Industrial applications</topic><topic>Learning</topic><topic>Machine Learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><topic>Synchronism</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeub, Lucas G. S.</creatorcontrib><creatorcontrib>Colavizza, Giovanni</creatorcontrib><creatorcontrib>Dong, Xiaowen</creatorcontrib><creatorcontrib>Bazzi, Marya</creatorcontrib><creatorcontrib>Cucuringu, Mihai</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeub, Lucas G. S.</au><au>Colavizza, Giovanni</au><au>Dong, Xiaowen</au><au>Bazzi, Marya</au><au>Cucuringu, Mihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local2Global: a distributed approach for scaling representation learning on graphs</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>112</volume><issue>5</issue><spage>1663</spage><epage>1692</epage><pages>1663-1692</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>We propose a decentralised “
local2global
” approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our
local2global
approach proceeds by first dividing the input graph into overlapping subgraphs (or “
patches
”) and training local representations for each patch independently. In a second step, we combine the local representations into a globally consistent representation by estimating the set of rigid motions that best align the local representations using information from the patch overlaps, via group synchronization. A key distinguishing feature of
local2global
relative to existing work is that patches are trained independently without the need for the often costly parameter synchronization during distributed training. This allows
local2global
to scale to large-scale industrial applications, where the input graph may not even fit into memory and may be stored in a distributed manner. We apply
local2global
on data sets of different sizes and show that our approach achieves a good trade-off between scale and accuracy on edge reconstruction and semi-supervised classification. We also consider the downstream task of anomaly detection and show how one can use
local2global
to highlight anomalies in cybersecurity networks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-022-06285-7</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-8941-9227</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6125 |
ispartof | Machine learning, 2023-05, Vol.112 (5), p.1663-1692 |
issn | 0885-6125 1573-0565 |
language | eng |
recordid | cdi_proquest_journals_2809964176 |
source | Springer Nature |
subjects | Anomalies Artificial Intelligence Computer Science Control Cybersecurity Graph representations Graph theory Graphical representations Industrial applications Learning Machine Learning Mechatronics Natural Language Processing (NLP) Robotics Simulation and Modeling Synchronism Training |
title | Local2Global: a distributed approach for scaling representation learning on graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local2Global:%20a%20distributed%20approach%20for%20scaling%20representation%20learning%20on%20graphs&rft.jtitle=Machine%20learning&rft.au=Jeub,%20Lucas%20G.%20S.&rft.date=2023-05-01&rft.volume=112&rft.issue=5&rft.spage=1663&rft.epage=1692&rft.pages=1663-1692&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-022-06285-7&rft_dat=%3Cproquest_cross%3E2809964176%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-9e638cc4081444cf192c27b291f032ab162b8998b4b6e95051e19ca9b412a8623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2809964176&rft_id=info:pmid/&rfr_iscdi=true |