Loading…

Stagnation heat flux estimation in spherically blunt axisymmetric hypersonic models

Hypersonic flows have high heat transfer rates, and their management is essential to avoid detrimental effects. Since accurate prediction and measurement of heat flux in hypersonic test facilities are complicated, heat flux at the stagnation point is mostly estimated using Fay and Riddell formulatio...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2023-05, Vol.237 (6), p.1369-1375
Main Authors: Irimpan, Kiran J, Menezes, Viren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c194t-eb68c7d6da13fe6396782bec2d46b3de7b3b97013ab64c1b1cfc7ea6b0a6ea3e3
container_end_page 1375
container_issue 6
container_start_page 1369
container_title Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering
container_volume 237
creator Irimpan, Kiran J
Menezes, Viren
description Hypersonic flows have high heat transfer rates, and their management is essential to avoid detrimental effects. Since accurate prediction and measurement of heat flux in hypersonic test facilities are complicated, heat flux at the stagnation point is mostly estimated using Fay and Riddell formulation with Newtonian tangential velocity gradient approximation. Although it is relatively accurate and reliable, some errors creep in due to incompetent modelling of the tangential velocity gradient. This article studies the applicability of Olivier's tangential velocity gradient formulation for a sphere in the estimation of stagnation heat flux for spherically blunt axisymmetric hypersonic models. Oliver’s estimation accurately models the tangential velocity gradient of spherically blunt axisymmetric hypersonic models as the heat flux estimates deviated only by approx. 2%–4% from the measured heat flux. A simplified model for tangential velocity gradient using Shock Standoff Distance and density ratio is also derived and tested for accuracy.
doi_str_mv 10.1177/09544100221124799
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2810078609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544100221124799</sage_id><sourcerecordid>2810078609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-eb68c7d6da13fe6396782bec2d46b3de7b3b97013ab64c1b1cfc7ea6b0a6ea3e3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0byaTJZSfEHBRXU9JJk77ZR5mWSg8_emjOBCvJt7Ofeccx8I3VJyT6lSD0SvhKCEMEYpE0rrM7RgRNCME7Y6R4tTPzsRLtFVCAeSYiX5Am230ew6E-u-w3swEVfNeMQQYt3OYN3hMOzB1840zYRtM3YRm2MdpraFmGC8nwbwoe9S2fYlNOEaXVSmCXDzk5fo8_npY_2abd5f3taPm8xRLWIGVuZOlbI0lFcguZYqZxYcK4W0vARludWKUG6sFI5a6iqnwEhLjATDgS_R3ew7-P5rTDsXh370XRpZsDydqnJJdGLRmeV8H4KHqhh8Os5PBSXF6XfFn98lzf2sCWYHv67_C74BQVZwfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2810078609</pqid></control><display><type>article</type><title>Stagnation heat flux estimation in spherically blunt axisymmetric hypersonic models</title><source>SAGE Journals Online</source><creator>Irimpan, Kiran J ; Menezes, Viren</creator><creatorcontrib>Irimpan, Kiran J ; Menezes, Viren</creatorcontrib><description>Hypersonic flows have high heat transfer rates, and their management is essential to avoid detrimental effects. Since accurate prediction and measurement of heat flux in hypersonic test facilities are complicated, heat flux at the stagnation point is mostly estimated using Fay and Riddell formulation with Newtonian tangential velocity gradient approximation. Although it is relatively accurate and reliable, some errors creep in due to incompetent modelling of the tangential velocity gradient. This article studies the applicability of Olivier's tangential velocity gradient formulation for a sphere in the estimation of stagnation heat flux for spherically blunt axisymmetric hypersonic models. Oliver’s estimation accurately models the tangential velocity gradient of spherically blunt axisymmetric hypersonic models as the heat flux estimates deviated only by approx. 2%–4% from the measured heat flux. A simplified model for tangential velocity gradient using Shock Standoff Distance and density ratio is also derived and tested for accuracy.</description><identifier>ISSN: 0954-4100</identifier><identifier>EISSN: 2041-3025</identifier><identifier>DOI: 10.1177/09544100221124799</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Density ratio ; Heat flux ; Heat transfer ; Hypersonic flow ; Stagnation point ; Test facilities ; Velocity gradient</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2023-05, Vol.237 (6), p.1369-1375</ispartof><rights>IMechE 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c194t-eb68c7d6da13fe6396782bec2d46b3de7b3b97013ab64c1b1cfc7ea6b0a6ea3e3</cites><orcidid>0000-0002-7496-6620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544100221124799$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544100221124799$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21904,27915,27916,45050,45438</link.rule.ids></links><search><creatorcontrib>Irimpan, Kiran J</creatorcontrib><creatorcontrib>Menezes, Viren</creatorcontrib><title>Stagnation heat flux estimation in spherically blunt axisymmetric hypersonic models</title><title>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</title><description>Hypersonic flows have high heat transfer rates, and their management is essential to avoid detrimental effects. Since accurate prediction and measurement of heat flux in hypersonic test facilities are complicated, heat flux at the stagnation point is mostly estimated using Fay and Riddell formulation with Newtonian tangential velocity gradient approximation. Although it is relatively accurate and reliable, some errors creep in due to incompetent modelling of the tangential velocity gradient. This article studies the applicability of Olivier's tangential velocity gradient formulation for a sphere in the estimation of stagnation heat flux for spherically blunt axisymmetric hypersonic models. Oliver’s estimation accurately models the tangential velocity gradient of spherically blunt axisymmetric hypersonic models as the heat flux estimates deviated only by approx. 2%–4% from the measured heat flux. A simplified model for tangential velocity gradient using Shock Standoff Distance and density ratio is also derived and tested for accuracy.</description><subject>Density ratio</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Hypersonic flow</subject><subject>Stagnation point</subject><subject>Test facilities</subject><subject>Velocity gradient</subject><issn>0954-4100</issn><issn>2041-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0byaTJZSfEHBRXU9JJk77ZR5mWSg8_emjOBCvJt7Ofeccx8I3VJyT6lSD0SvhKCEMEYpE0rrM7RgRNCME7Y6R4tTPzsRLtFVCAeSYiX5Am230ew6E-u-w3swEVfNeMQQYt3OYN3hMOzB1840zYRtM3YRm2MdpraFmGC8nwbwoe9S2fYlNOEaXVSmCXDzk5fo8_npY_2abd5f3taPm8xRLWIGVuZOlbI0lFcguZYqZxYcK4W0vARludWKUG6sFI5a6iqnwEhLjATDgS_R3ew7-P5rTDsXh370XRpZsDydqnJJdGLRmeV8H4KHqhh8Os5PBSXF6XfFn98lzf2sCWYHv67_C74BQVZwfg</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Irimpan, Kiran J</creator><creator>Menezes, Viren</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7496-6620</orcidid></search><sort><creationdate>202305</creationdate><title>Stagnation heat flux estimation in spherically blunt axisymmetric hypersonic models</title><author>Irimpan, Kiran J ; Menezes, Viren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-eb68c7d6da13fe6396782bec2d46b3de7b3b97013ab64c1b1cfc7ea6b0a6ea3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Density ratio</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Hypersonic flow</topic><topic>Stagnation point</topic><topic>Test facilities</topic><topic>Velocity gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irimpan, Kiran J</creatorcontrib><creatorcontrib>Menezes, Viren</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irimpan, Kiran J</au><au>Menezes, Viren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stagnation heat flux estimation in spherically blunt axisymmetric hypersonic models</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle><date>2023-05</date><risdate>2023</risdate><volume>237</volume><issue>6</issue><spage>1369</spage><epage>1375</epage><pages>1369-1375</pages><issn>0954-4100</issn><eissn>2041-3025</eissn><abstract>Hypersonic flows have high heat transfer rates, and their management is essential to avoid detrimental effects. Since accurate prediction and measurement of heat flux in hypersonic test facilities are complicated, heat flux at the stagnation point is mostly estimated using Fay and Riddell formulation with Newtonian tangential velocity gradient approximation. Although it is relatively accurate and reliable, some errors creep in due to incompetent modelling of the tangential velocity gradient. This article studies the applicability of Olivier's tangential velocity gradient formulation for a sphere in the estimation of stagnation heat flux for spherically blunt axisymmetric hypersonic models. Oliver’s estimation accurately models the tangential velocity gradient of spherically blunt axisymmetric hypersonic models as the heat flux estimates deviated only by approx. 2%–4% from the measured heat flux. A simplified model for tangential velocity gradient using Shock Standoff Distance and density ratio is also derived and tested for accuracy.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544100221124799</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7496-6620</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4100
ispartof Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2023-05, Vol.237 (6), p.1369-1375
issn 0954-4100
2041-3025
language eng
recordid cdi_proquest_journals_2810078609
source SAGE Journals Online
subjects Density ratio
Heat flux
Heat transfer
Hypersonic flow
Stagnation point
Test facilities
Velocity gradient
title Stagnation heat flux estimation in spherically blunt axisymmetric hypersonic models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stagnation%20heat%20flux%20estimation%20in%20spherically%20blunt%20axisymmetric%20hypersonic%20models&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20G,%20Journal%20of%20aerospace%20engineering&rft.au=Irimpan,%20Kiran%20J&rft.date=2023-05&rft.volume=237&rft.issue=6&rft.spage=1369&rft.epage=1375&rft.pages=1369-1375&rft.issn=0954-4100&rft.eissn=2041-3025&rft_id=info:doi/10.1177/09544100221124799&rft_dat=%3Cproquest_cross%3E2810078609%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c194t-eb68c7d6da13fe6396782bec2d46b3de7b3b97013ab64c1b1cfc7ea6b0a6ea3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2810078609&rft_id=info:pmid/&rft_sage_id=10.1177_09544100221124799&rfr_iscdi=true