Loading…
Comprehensive analysis of transcriptomics and metabolomics to understand chronic ethanol induced murine cardiotoxicity
Alcohol abuse has attracted public attention and long-term alcohol exposure can lead to alcohol-featured non-ischemic dilated cardiomyopathy. However, the precise underlying mechanisms of alcoholic cardiomyopathy remain to be elucidated. This study aimed to comprehensively characterize alcohol abuse...
Saved in:
Published in: | Molecular and cellular biochemistry 2023-06, Vol.478 (6), p.1345-1359 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alcohol abuse has attracted public attention and long-term alcohol exposure can lead to alcohol-featured non-ischemic dilated cardiomyopathy. However, the precise underlying mechanisms of alcoholic cardiomyopathy remain to be elucidated. This study aimed to comprehensively characterize alcohol abuse-mediated effects on downstream metabolites and genes transcription using a multi-omics strategy. We established chronic ethanol intoxication model in adult male C57BL/6 mice through 8Â weeks of 95% alcohol vapor administration and performed metabolomics analysis, mRNA-seq and microRNA-seq analysis with myocardial tissues. Firstly, ethanol markedly induced ejection fraction reductions, cardiomyocyte hypertrophy, and myocardial fibrosis in mice with myocardial oxidative injury. In addition, the omics analysis identified a total of 166 differentially expressed metabolites (DEMs), 241 differentially expressed genes (DEGs) and 19 differentially expressed microRNAs (DEmiRNAs), respectively. The results highlighted that alcohol abuse mainly interfered with endogenous lipids, amino acids and nucleotides production and the relevant genes transcription in mice hearts. Based on KEGG database, the affected signaling pathways are primarily mapped to the antigen processing and presentation, regulation of actin cytoskeleton, AMPK signaling pathway, tyrosine metabolism and PPAR signaling pathway, etc. Furthermore, 9 hub genes related to oxidative stress from DEGs were selected based on function annotation, and potential alcoholic cardiotoxic oxidative stress biomarkers were determined through establishing PPI network and DEmiRNAs-DEGs cross-talk. Altogether, our data strongly supported the conclusion that ethanol abuse characteristically affected amino acid and energy metabolism, nucleotide metabolism and especially lipids metabolism in mice hearts, and underlined the values of lipids signaling and oxidative stress in the treatment strategies. |
---|---|
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/s11010-022-04592-0 |