Loading…
Li-Doped Layered Na1.0Cu0.22Fe0.30Mn0.48O2 Cathode with Enhanced Electrochemical Performance for Sodium-Ion Batteries
The introduction of copper (Cu) element to iron-manganese-based layered cathode materials can effectively enhance their cycling stability and air tolerance. However, the low redox reactivity of Cu 2+ decreases the capacity of the copper-iron-manganese layered oxide cathode material. Recently, lithiu...
Saved in:
Published in: | Journal of electronic materials 2023-06, Vol.52 (6), p.3509-3516 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-2bb5bc2d7f931b6dd637d8c6d391d9f14bef249e39cac93f90c58c31161b61b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-2bb5bc2d7f931b6dd637d8c6d391d9f14bef249e39cac93f90c58c31161b61b83 |
container_end_page | 3516 |
container_issue | 6 |
container_start_page | 3509 |
container_title | Journal of electronic materials |
container_volume | 52 |
creator | Yuan, Yuanliang Wang, Xin Jiang, Jicheng Guo, Can Wang, Donghuang Zhou, Aijun |
description | The introduction of copper (Cu) element to iron-manganese-based layered cathode materials can effectively enhance their cycling stability and air tolerance. However, the low redox reactivity of Cu
2+
decreases the capacity of the copper-iron-manganese layered oxide cathode material. Recently, lithium (Li) doping has been regarded as an efficient strategy to exploit high-capacity cathode materials by enabling high-covalency transition metals. Here, we report a Na
1.0
Li
x
Cu
0.22
Fe
0.30
Mn
0.48
O
2
(
x
= 0.025, 0.05, 0.075) cathode material with increased capacity by adding Li into a Na
1.0
Cu
0.22
Fe
0.30
Mn
0.48
O
2
cathode via a simple solid-phase sintering method. The doped Li element can regulate the redox reactivities of the adjacent Fe and Mn elements, leading to the promotion of the Fe redox reactivity and the suppression of Mn redox reactivity, which prevents both the Jahn–Teller effect and the structure collapse during the charge/discharge process. In conclusion, Li doping can not only improve the capacity of the cathode material but also improve its stability. When
x
= 0.075, the capacity of Na
1
Li
0.075
Cu
0.22
Fe
0.30
Mn
0.48
O
2
cathode can reach 114.2 mAh g
−1
with a high capacity retention of 90.2% after 300 cycles at 1 C. These results shed light on the role play of Li in the transition metal layer, and can guide the design and modification for high-performance SIBs of layered materials. |
doi_str_mv | 10.1007/s11664-023-10344-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2810732502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810732502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2bb5bc2d7f931b6dd637d8c6d391d9f14bef249e39cac93f90c58c31161b61b83</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz6mZpH-PWnd1obqCCt5CmqS2y7ZZkxbZb2_WCt48vRnm997AQ-gSSAiEpNcOIEkiTCjDQFgU4fQIzSCO_Jol78doRlgCOKYsPkVnzm0IgRgymKGxbPGd2WkVlGKvrdcnASEpRhJSutQkZOSxJ2GUrWlQiKExSgdf7dAEi74RvfT8YqvlYI1sdNdKsQ2eta2N7Q7HwA_Bi1Ht2OGV6YNbMQzattqdo5NabJ2--NU5elsuXosHXK7vV8VNiSWDfMC0quJKUpXWOYMqUSphqcpkolgOKq8hqnRNo1yzXAqZszonMs68FRJPQ5WxObqacnfWfI7aDXxjRtv7l5xmQFJGY1_ZHNGJktY4Z3XNd7bthN1zIPxQL5_q5Z7lP_Xy1JvYZHIe7j-0_Yv-x_UN2md7MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2810732502</pqid></control><display><type>article</type><title>Li-Doped Layered Na1.0Cu0.22Fe0.30Mn0.48O2 Cathode with Enhanced Electrochemical Performance for Sodium-Ion Batteries</title><source>Springer Nature</source><creator>Yuan, Yuanliang ; Wang, Xin ; Jiang, Jicheng ; Guo, Can ; Wang, Donghuang ; Zhou, Aijun</creator><creatorcontrib>Yuan, Yuanliang ; Wang, Xin ; Jiang, Jicheng ; Guo, Can ; Wang, Donghuang ; Zhou, Aijun</creatorcontrib><description>The introduction of copper (Cu) element to iron-manganese-based layered cathode materials can effectively enhance their cycling stability and air tolerance. However, the low redox reactivity of Cu
2+
decreases the capacity of the copper-iron-manganese layered oxide cathode material. Recently, lithium (Li) doping has been regarded as an efficient strategy to exploit high-capacity cathode materials by enabling high-covalency transition metals. Here, we report a Na
1.0
Li
x
Cu
0.22
Fe
0.30
Mn
0.48
O
2
(
x
= 0.025, 0.05, 0.075) cathode material with increased capacity by adding Li into a Na
1.0
Cu
0.22
Fe
0.30
Mn
0.48
O
2
cathode via a simple solid-phase sintering method. The doped Li element can regulate the redox reactivities of the adjacent Fe and Mn elements, leading to the promotion of the Fe redox reactivity and the suppression of Mn redox reactivity, which prevents both the Jahn–Teller effect and the structure collapse during the charge/discharge process. In conclusion, Li doping can not only improve the capacity of the cathode material but also improve its stability. When
x
= 0.075, the capacity of Na
1
Li
0.075
Cu
0.22
Fe
0.30
Mn
0.48
O
2
cathode can reach 114.2 mAh g
−1
with a high capacity retention of 90.2% after 300 cycles at 1 C. These results shed light on the role play of Li in the transition metal layer, and can guide the design and modification for high-performance SIBs of layered materials.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10344-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced Metal Ion Batteries ; Cathodes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Doping ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electronics and Microelectronics ; Energy ; Instrumentation ; Iron ; Jahn-Teller effect ; Layered materials ; Lithium ; Manganese ; Materials Science ; Metals ; Optical and Electronic Materials ; Phase transitions ; Reactivity ; Sodium ; Sodium-ion batteries ; Solid phases ; Solid State Physics ; Stability ; Topical Collection: Advanced Metal Ion Batteries ; Transition metals</subject><ispartof>Journal of electronic materials, 2023-06, Vol.52 (6), p.3509-3516</ispartof><rights>The Minerals, Metals & Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2bb5bc2d7f931b6dd637d8c6d391d9f14bef249e39cac93f90c58c31161b61b83</citedby><cites>FETCH-LOGICAL-c319t-2bb5bc2d7f931b6dd637d8c6d391d9f14bef249e39cac93f90c58c31161b61b83</cites><orcidid>0000-0003-4142-8030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yuan, Yuanliang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Jiang, Jicheng</creatorcontrib><creatorcontrib>Guo, Can</creatorcontrib><creatorcontrib>Wang, Donghuang</creatorcontrib><creatorcontrib>Zhou, Aijun</creatorcontrib><title>Li-Doped Layered Na1.0Cu0.22Fe0.30Mn0.48O2 Cathode with Enhanced Electrochemical Performance for Sodium-Ion Batteries</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>The introduction of copper (Cu) element to iron-manganese-based layered cathode materials can effectively enhance their cycling stability and air tolerance. However, the low redox reactivity of Cu
2+
decreases the capacity of the copper-iron-manganese layered oxide cathode material. Recently, lithium (Li) doping has been regarded as an efficient strategy to exploit high-capacity cathode materials by enabling high-covalency transition metals. Here, we report a Na
1.0
Li
x
Cu
0.22
Fe
0.30
Mn
0.48
O
2
(
x
= 0.025, 0.05, 0.075) cathode material with increased capacity by adding Li into a Na
1.0
Cu
0.22
Fe
0.30
Mn
0.48
O
2
cathode via a simple solid-phase sintering method. The doped Li element can regulate the redox reactivities of the adjacent Fe and Mn elements, leading to the promotion of the Fe redox reactivity and the suppression of Mn redox reactivity, which prevents both the Jahn–Teller effect and the structure collapse during the charge/discharge process. In conclusion, Li doping can not only improve the capacity of the cathode material but also improve its stability. When
x
= 0.075, the capacity of Na
1
Li
0.075
Cu
0.22
Fe
0.30
Mn
0.48
O
2
cathode can reach 114.2 mAh g
−1
with a high capacity retention of 90.2% after 300 cycles at 1 C. These results shed light on the role play of Li in the transition metal layer, and can guide the design and modification for high-performance SIBs of layered materials.</description><subject>Advanced Metal Ion Batteries</subject><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electronics and Microelectronics</subject><subject>Energy</subject><subject>Instrumentation</subject><subject>Iron</subject><subject>Jahn-Teller effect</subject><subject>Layered materials</subject><subject>Lithium</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Optical and Electronic Materials</subject><subject>Phase transitions</subject><subject>Reactivity</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Solid phases</subject><subject>Solid State Physics</subject><subject>Stability</subject><subject>Topical Collection: Advanced Metal Ion Batteries</subject><subject>Transition metals</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz6mZpH-PWnd1obqCCt5CmqS2y7ZZkxbZb2_WCt48vRnm997AQ-gSSAiEpNcOIEkiTCjDQFgU4fQIzSCO_Jol78doRlgCOKYsPkVnzm0IgRgymKGxbPGd2WkVlGKvrdcnASEpRhJSutQkZOSxJ2GUrWlQiKExSgdf7dAEi74RvfT8YqvlYI1sdNdKsQ2eta2N7Q7HwA_Bi1Ht2OGV6YNbMQzattqdo5NabJ2--NU5elsuXosHXK7vV8VNiSWDfMC0quJKUpXWOYMqUSphqcpkolgOKq8hqnRNo1yzXAqZszonMs68FRJPQ5WxObqacnfWfI7aDXxjRtv7l5xmQFJGY1_ZHNGJktY4Z3XNd7bthN1zIPxQL5_q5Z7lP_Xy1JvYZHIe7j-0_Yv-x_UN2md7MA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Yuan, Yuanliang</creator><creator>Wang, Xin</creator><creator>Jiang, Jicheng</creator><creator>Guo, Can</creator><creator>Wang, Donghuang</creator><creator>Zhou, Aijun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-4142-8030</orcidid></search><sort><creationdate>20230601</creationdate><title>Li-Doped Layered Na1.0Cu0.22Fe0.30Mn0.48O2 Cathode with Enhanced Electrochemical Performance for Sodium-Ion Batteries</title><author>Yuan, Yuanliang ; Wang, Xin ; Jiang, Jicheng ; Guo, Can ; Wang, Donghuang ; Zhou, Aijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2bb5bc2d7f931b6dd637d8c6d391d9f14bef249e39cac93f90c58c31161b61b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced Metal Ion Batteries</topic><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electronics and Microelectronics</topic><topic>Energy</topic><topic>Instrumentation</topic><topic>Iron</topic><topic>Jahn-Teller effect</topic><topic>Layered materials</topic><topic>Lithium</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Optical and Electronic Materials</topic><topic>Phase transitions</topic><topic>Reactivity</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Solid phases</topic><topic>Solid State Physics</topic><topic>Stability</topic><topic>Topical Collection: Advanced Metal Ion Batteries</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Yuanliang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Jiang, Jicheng</creatorcontrib><creatorcontrib>Guo, Can</creatorcontrib><creatorcontrib>Wang, Donghuang</creatorcontrib><creatorcontrib>Zhou, Aijun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Yuanliang</au><au>Wang, Xin</au><au>Jiang, Jicheng</au><au>Guo, Can</au><au>Wang, Donghuang</au><au>Zhou, Aijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li-Doped Layered Na1.0Cu0.22Fe0.30Mn0.48O2 Cathode with Enhanced Electrochemical Performance for Sodium-Ion Batteries</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>52</volume><issue>6</issue><spage>3509</spage><epage>3516</epage><pages>3509-3516</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The introduction of copper (Cu) element to iron-manganese-based layered cathode materials can effectively enhance their cycling stability and air tolerance. However, the low redox reactivity of Cu
2+
decreases the capacity of the copper-iron-manganese layered oxide cathode material. Recently, lithium (Li) doping has been regarded as an efficient strategy to exploit high-capacity cathode materials by enabling high-covalency transition metals. Here, we report a Na
1.0
Li
x
Cu
0.22
Fe
0.30
Mn
0.48
O
2
(
x
= 0.025, 0.05, 0.075) cathode material with increased capacity by adding Li into a Na
1.0
Cu
0.22
Fe
0.30
Mn
0.48
O
2
cathode via a simple solid-phase sintering method. The doped Li element can regulate the redox reactivities of the adjacent Fe and Mn elements, leading to the promotion of the Fe redox reactivity and the suppression of Mn redox reactivity, which prevents both the Jahn–Teller effect and the structure collapse during the charge/discharge process. In conclusion, Li doping can not only improve the capacity of the cathode material but also improve its stability. When
x
= 0.075, the capacity of Na
1
Li
0.075
Cu
0.22
Fe
0.30
Mn
0.48
O
2
cathode can reach 114.2 mAh g
−1
with a high capacity retention of 90.2% after 300 cycles at 1 C. These results shed light on the role play of Li in the transition metal layer, and can guide the design and modification for high-performance SIBs of layered materials.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10344-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4142-8030</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2023-06, Vol.52 (6), p.3509-3516 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2810732502 |
source | Springer Nature |
subjects | Advanced Metal Ion Batteries Cathodes Characterization and Evaluation of Materials Chemistry and Materials Science Copper Doping Electrochemical analysis Electrode materials Electrodes Electronics and Microelectronics Energy Instrumentation Iron Jahn-Teller effect Layered materials Lithium Manganese Materials Science Metals Optical and Electronic Materials Phase transitions Reactivity Sodium Sodium-ion batteries Solid phases Solid State Physics Stability Topical Collection: Advanced Metal Ion Batteries Transition metals |
title | Li-Doped Layered Na1.0Cu0.22Fe0.30Mn0.48O2 Cathode with Enhanced Electrochemical Performance for Sodium-Ion Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li-Doped%20Layered%20Na1.0Cu0.22Fe0.30Mn0.48O2%20Cathode%20with%20Enhanced%20Electrochemical%20Performance%20for%20Sodium-Ion%20Batteries&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Yuan,%20Yuanliang&rft.date=2023-06-01&rft.volume=52&rft.issue=6&rft.spage=3509&rft.epage=3516&rft.pages=3509-3516&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10344-7&rft_dat=%3Cproquest_cross%3E2810732502%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-2bb5bc2d7f931b6dd637d8c6d391d9f14bef249e39cac93f90c58c31161b61b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2810732502&rft_id=info:pmid/&rfr_iscdi=true |