Loading…

Li-Doped Layered Na1.0Cu0.22Fe0.30Mn0.48O2 Cathode with Enhanced Electrochemical Performance for Sodium-Ion Batteries

The introduction of copper (Cu) element to iron-manganese-based layered cathode materials can effectively enhance their cycling stability and air tolerance. However, the low redox reactivity of Cu 2+ decreases the capacity of the copper-iron-manganese layered oxide cathode material. Recently, lithiu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2023-06, Vol.52 (6), p.3509-3516
Main Authors: Yuan, Yuanliang, Wang, Xin, Jiang, Jicheng, Guo, Can, Wang, Donghuang, Zhou, Aijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-2bb5bc2d7f931b6dd637d8c6d391d9f14bef249e39cac93f90c58c31161b61b83
cites cdi_FETCH-LOGICAL-c319t-2bb5bc2d7f931b6dd637d8c6d391d9f14bef249e39cac93f90c58c31161b61b83
container_end_page 3516
container_issue 6
container_start_page 3509
container_title Journal of electronic materials
container_volume 52
creator Yuan, Yuanliang
Wang, Xin
Jiang, Jicheng
Guo, Can
Wang, Donghuang
Zhou, Aijun
description The introduction of copper (Cu) element to iron-manganese-based layered cathode materials can effectively enhance their cycling stability and air tolerance. However, the low redox reactivity of Cu 2+ decreases the capacity of the copper-iron-manganese layered oxide cathode material. Recently, lithium (Li) doping has been regarded as an efficient strategy to exploit high-capacity cathode materials by enabling high-covalency transition metals. Here, we report a Na 1.0 Li x Cu 0.22 Fe 0.30 Mn 0.48 O 2 ( x  = 0.025, 0.05, 0.075) cathode material with increased capacity by adding Li into a Na 1.0 Cu 0.22 Fe 0.30 Mn 0.48 O 2 cathode via a simple solid-phase sintering method. The doped Li element can regulate the redox reactivities of the adjacent Fe and Mn elements, leading to the promotion of the Fe redox reactivity and the suppression of Mn redox reactivity, which prevents both the Jahn–Teller effect and the structure collapse during the charge/discharge process. In conclusion, Li doping can not only improve the capacity of the cathode material but also improve its stability. When x  = 0.075, the capacity of Na 1 Li 0.075 Cu 0.22 Fe 0.30 Mn 0.48 O 2 cathode can reach 114.2 mAh g −1 with a high capacity retention of 90.2% after 300 cycles at 1 C. These results shed light on the role play of Li in the transition metal layer, and can guide the design and modification for high-performance SIBs of layered materials.
doi_str_mv 10.1007/s11664-023-10344-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2810732502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810732502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2bb5bc2d7f931b6dd637d8c6d391d9f14bef249e39cac93f90c58c31161b61b83</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz6mZpH-PWnd1obqCCt5CmqS2y7ZZkxbZb2_WCt48vRnm997AQ-gSSAiEpNcOIEkiTCjDQFgU4fQIzSCO_Jol78doRlgCOKYsPkVnzm0IgRgymKGxbPGd2WkVlGKvrdcnASEpRhJSutQkZOSxJ2GUrWlQiKExSgdf7dAEi74RvfT8YqvlYI1sdNdKsQ2eta2N7Q7HwA_Bi1Ht2OGV6YNbMQzattqdo5NabJ2--NU5elsuXosHXK7vV8VNiSWDfMC0quJKUpXWOYMqUSphqcpkolgOKq8hqnRNo1yzXAqZszonMs68FRJPQ5WxObqacnfWfI7aDXxjRtv7l5xmQFJGY1_ZHNGJktY4Z3XNd7bthN1zIPxQL5_q5Z7lP_Xy1JvYZHIe7j-0_Yv-x_UN2md7MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2810732502</pqid></control><display><type>article</type><title>Li-Doped Layered Na1.0Cu0.22Fe0.30Mn0.48O2 Cathode with Enhanced Electrochemical Performance for Sodium-Ion Batteries</title><source>Springer Nature</source><creator>Yuan, Yuanliang ; Wang, Xin ; Jiang, Jicheng ; Guo, Can ; Wang, Donghuang ; Zhou, Aijun</creator><creatorcontrib>Yuan, Yuanliang ; Wang, Xin ; Jiang, Jicheng ; Guo, Can ; Wang, Donghuang ; Zhou, Aijun</creatorcontrib><description>The introduction of copper (Cu) element to iron-manganese-based layered cathode materials can effectively enhance their cycling stability and air tolerance. However, the low redox reactivity of Cu 2+ decreases the capacity of the copper-iron-manganese layered oxide cathode material. Recently, lithium (Li) doping has been regarded as an efficient strategy to exploit high-capacity cathode materials by enabling high-covalency transition metals. Here, we report a Na 1.0 Li x Cu 0.22 Fe 0.30 Mn 0.48 O 2 ( x  = 0.025, 0.05, 0.075) cathode material with increased capacity by adding Li into a Na 1.0 Cu 0.22 Fe 0.30 Mn 0.48 O 2 cathode via a simple solid-phase sintering method. The doped Li element can regulate the redox reactivities of the adjacent Fe and Mn elements, leading to the promotion of the Fe redox reactivity and the suppression of Mn redox reactivity, which prevents both the Jahn–Teller effect and the structure collapse during the charge/discharge process. In conclusion, Li doping can not only improve the capacity of the cathode material but also improve its stability. When x  = 0.075, the capacity of Na 1 Li 0.075 Cu 0.22 Fe 0.30 Mn 0.48 O 2 cathode can reach 114.2 mAh g −1 with a high capacity retention of 90.2% after 300 cycles at 1 C. These results shed light on the role play of Li in the transition metal layer, and can guide the design and modification for high-performance SIBs of layered materials.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10344-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced Metal Ion Batteries ; Cathodes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Doping ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electronics and Microelectronics ; Energy ; Instrumentation ; Iron ; Jahn-Teller effect ; Layered materials ; Lithium ; Manganese ; Materials Science ; Metals ; Optical and Electronic Materials ; Phase transitions ; Reactivity ; Sodium ; Sodium-ion batteries ; Solid phases ; Solid State Physics ; Stability ; Topical Collection: Advanced Metal Ion Batteries ; Transition metals</subject><ispartof>Journal of electronic materials, 2023-06, Vol.52 (6), p.3509-3516</ispartof><rights>The Minerals, Metals &amp; Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2bb5bc2d7f931b6dd637d8c6d391d9f14bef249e39cac93f90c58c31161b61b83</citedby><cites>FETCH-LOGICAL-c319t-2bb5bc2d7f931b6dd637d8c6d391d9f14bef249e39cac93f90c58c31161b61b83</cites><orcidid>0000-0003-4142-8030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yuan, Yuanliang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Jiang, Jicheng</creatorcontrib><creatorcontrib>Guo, Can</creatorcontrib><creatorcontrib>Wang, Donghuang</creatorcontrib><creatorcontrib>Zhou, Aijun</creatorcontrib><title>Li-Doped Layered Na1.0Cu0.22Fe0.30Mn0.48O2 Cathode with Enhanced Electrochemical Performance for Sodium-Ion Batteries</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>The introduction of copper (Cu) element to iron-manganese-based layered cathode materials can effectively enhance their cycling stability and air tolerance. However, the low redox reactivity of Cu 2+ decreases the capacity of the copper-iron-manganese layered oxide cathode material. Recently, lithium (Li) doping has been regarded as an efficient strategy to exploit high-capacity cathode materials by enabling high-covalency transition metals. Here, we report a Na 1.0 Li x Cu 0.22 Fe 0.30 Mn 0.48 O 2 ( x  = 0.025, 0.05, 0.075) cathode material with increased capacity by adding Li into a Na 1.0 Cu 0.22 Fe 0.30 Mn 0.48 O 2 cathode via a simple solid-phase sintering method. The doped Li element can regulate the redox reactivities of the adjacent Fe and Mn elements, leading to the promotion of the Fe redox reactivity and the suppression of Mn redox reactivity, which prevents both the Jahn–Teller effect and the structure collapse during the charge/discharge process. In conclusion, Li doping can not only improve the capacity of the cathode material but also improve its stability. When x  = 0.075, the capacity of Na 1 Li 0.075 Cu 0.22 Fe 0.30 Mn 0.48 O 2 cathode can reach 114.2 mAh g −1 with a high capacity retention of 90.2% after 300 cycles at 1 C. These results shed light on the role play of Li in the transition metal layer, and can guide the design and modification for high-performance SIBs of layered materials.</description><subject>Advanced Metal Ion Batteries</subject><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electronics and Microelectronics</subject><subject>Energy</subject><subject>Instrumentation</subject><subject>Iron</subject><subject>Jahn-Teller effect</subject><subject>Layered materials</subject><subject>Lithium</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Optical and Electronic Materials</subject><subject>Phase transitions</subject><subject>Reactivity</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Solid phases</subject><subject>Solid State Physics</subject><subject>Stability</subject><subject>Topical Collection: Advanced Metal Ion Batteries</subject><subject>Transition metals</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz6mZpH-PWnd1obqCCt5CmqS2y7ZZkxbZb2_WCt48vRnm997AQ-gSSAiEpNcOIEkiTCjDQFgU4fQIzSCO_Jol78doRlgCOKYsPkVnzm0IgRgymKGxbPGd2WkVlGKvrdcnASEpRhJSutQkZOSxJ2GUrWlQiKExSgdf7dAEi74RvfT8YqvlYI1sdNdKsQ2eta2N7Q7HwA_Bi1Ht2OGV6YNbMQzattqdo5NabJ2--NU5elsuXosHXK7vV8VNiSWDfMC0quJKUpXWOYMqUSphqcpkolgOKq8hqnRNo1yzXAqZszonMs68FRJPQ5WxObqacnfWfI7aDXxjRtv7l5xmQFJGY1_ZHNGJktY4Z3XNd7bthN1zIPxQL5_q5Z7lP_Xy1JvYZHIe7j-0_Yv-x_UN2md7MA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Yuan, Yuanliang</creator><creator>Wang, Xin</creator><creator>Jiang, Jicheng</creator><creator>Guo, Can</creator><creator>Wang, Donghuang</creator><creator>Zhou, Aijun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-4142-8030</orcidid></search><sort><creationdate>20230601</creationdate><title>Li-Doped Layered Na1.0Cu0.22Fe0.30Mn0.48O2 Cathode with Enhanced Electrochemical Performance for Sodium-Ion Batteries</title><author>Yuan, Yuanliang ; Wang, Xin ; Jiang, Jicheng ; Guo, Can ; Wang, Donghuang ; Zhou, Aijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2bb5bc2d7f931b6dd637d8c6d391d9f14bef249e39cac93f90c58c31161b61b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced Metal Ion Batteries</topic><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electronics and Microelectronics</topic><topic>Energy</topic><topic>Instrumentation</topic><topic>Iron</topic><topic>Jahn-Teller effect</topic><topic>Layered materials</topic><topic>Lithium</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Optical and Electronic Materials</topic><topic>Phase transitions</topic><topic>Reactivity</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Solid phases</topic><topic>Solid State Physics</topic><topic>Stability</topic><topic>Topical Collection: Advanced Metal Ion Batteries</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Yuanliang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Jiang, Jicheng</creatorcontrib><creatorcontrib>Guo, Can</creatorcontrib><creatorcontrib>Wang, Donghuang</creatorcontrib><creatorcontrib>Zhou, Aijun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Yuanliang</au><au>Wang, Xin</au><au>Jiang, Jicheng</au><au>Guo, Can</au><au>Wang, Donghuang</au><au>Zhou, Aijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li-Doped Layered Na1.0Cu0.22Fe0.30Mn0.48O2 Cathode with Enhanced Electrochemical Performance for Sodium-Ion Batteries</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>52</volume><issue>6</issue><spage>3509</spage><epage>3516</epage><pages>3509-3516</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The introduction of copper (Cu) element to iron-manganese-based layered cathode materials can effectively enhance their cycling stability and air tolerance. However, the low redox reactivity of Cu 2+ decreases the capacity of the copper-iron-manganese layered oxide cathode material. Recently, lithium (Li) doping has been regarded as an efficient strategy to exploit high-capacity cathode materials by enabling high-covalency transition metals. Here, we report a Na 1.0 Li x Cu 0.22 Fe 0.30 Mn 0.48 O 2 ( x  = 0.025, 0.05, 0.075) cathode material with increased capacity by adding Li into a Na 1.0 Cu 0.22 Fe 0.30 Mn 0.48 O 2 cathode via a simple solid-phase sintering method. The doped Li element can regulate the redox reactivities of the adjacent Fe and Mn elements, leading to the promotion of the Fe redox reactivity and the suppression of Mn redox reactivity, which prevents both the Jahn–Teller effect and the structure collapse during the charge/discharge process. In conclusion, Li doping can not only improve the capacity of the cathode material but also improve its stability. When x  = 0.075, the capacity of Na 1 Li 0.075 Cu 0.22 Fe 0.30 Mn 0.48 O 2 cathode can reach 114.2 mAh g −1 with a high capacity retention of 90.2% after 300 cycles at 1 C. These results shed light on the role play of Li in the transition metal layer, and can guide the design and modification for high-performance SIBs of layered materials.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10344-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4142-8030</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2023-06, Vol.52 (6), p.3509-3516
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2810732502
source Springer Nature
subjects Advanced Metal Ion Batteries
Cathodes
Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper
Doping
Electrochemical analysis
Electrode materials
Electrodes
Electronics and Microelectronics
Energy
Instrumentation
Iron
Jahn-Teller effect
Layered materials
Lithium
Manganese
Materials Science
Metals
Optical and Electronic Materials
Phase transitions
Reactivity
Sodium
Sodium-ion batteries
Solid phases
Solid State Physics
Stability
Topical Collection: Advanced Metal Ion Batteries
Transition metals
title Li-Doped Layered Na1.0Cu0.22Fe0.30Mn0.48O2 Cathode with Enhanced Electrochemical Performance for Sodium-Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li-Doped%20Layered%20Na1.0Cu0.22Fe0.30Mn0.48O2%20Cathode%20with%20Enhanced%20Electrochemical%20Performance%20for%20Sodium-Ion%20Batteries&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Yuan,%20Yuanliang&rft.date=2023-06-01&rft.volume=52&rft.issue=6&rft.spage=3509&rft.epage=3516&rft.pages=3509-3516&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10344-7&rft_dat=%3Cproquest_cross%3E2810732502%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-2bb5bc2d7f931b6dd637d8c6d391d9f14bef249e39cac93f90c58c31161b61b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2810732502&rft_id=info:pmid/&rfr_iscdi=true